Home
Class 12
MATHS
" (v) "cot^(-1)(x)/(sqrt(1-x^(2)))...

" (v) "cot^(-1)(x)/(sqrt(1-x^(2)))

Promotional Banner

Similar Questions

Explore conceptually related problems

cot^(-1)((sqrt(1-x^(2)))/(x))

Differentiate sin^(-1)sqrt(1-x^(2)) with respect to cot^(-1)((x)/(sqrt(1-x^(2)))), if ^(@)0

If -1< x < 0 , then cos^(-1)x is equal to (a) sec^(-1)(1/ x) (b) pi-sin^(-1)sqrt(1+x^2) (c) pi+tan^(-1)(x/(sqrt(1-x^2))) (d) cot^(-1)(x/(sqrt(1-x^2))) .

If -1

If -1< x < 0 , then cos^(-1)x is equal to (a) sec^(-1)(1/ x) (b) pi-sin^(-1)sqrt(1+x^2) (c) pi+tan^(-1)(x/(sqrt(1-x^2))) (d) cot^(-1)(x/(sqrt(1-x^2))) .

Prove that cot (cos^(-1) x) = x/(sqrt(1-x^(2))) |x| lt 1

int(tan(cos^(-1)x)+cot(sin^(-1)x))/(sqrt(1-x^(2)))dx=

If the value of the definite integral int ^(-1) ^(1) cos ^(-1) ((1)/(sqrt(1-x ^(2)))) . (cot ^(-1)""(x )/(sqrt (1-(x ^(2))^(|x|))))dx = (pi^(2)(sqrta-sqrtb))/(sqrtc) where a,b,c in N in their lowest from, then find the value of (a+b+c).