Home
Class 12
MATHS
If f(x)=int0^1e^|t-x|dt where (0<=x<=1),...

If `f(x)=int_0^1e^|t-x|dt` where `(0<=x<=1)`, then maximum value of `f(x)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=int_(0)^(1)e^(|t-x|)dt where (0<=x<=1) then maximum value of f(x) is

If f(x)=int_(0)^(x)|t-1|dt , where 0lexle2 , then

If f(x)=int_(0)^(x)|t-1|dt , where 0lexle2 , then

If f(x)=int_(0)^(x)|t-1|dt , where 0lexle2 , then

A continuous function f(x) satisfies the relation f(x)=e^x+int_0^1 e^xf(t)dt then f(1)=

A continuous function f(x) satisfies the relation f(x)=e^x+int_0^1 e^xf(t)dt then f(1)=

If f(x) = int_(0)^(x) t.e^(t) dt then f'(-1)=

If f(x)=x+int_0^1t(x+t)f(t) dt ,then the value of 23/2f(0) is equal to _________

If f(x)=x+int_0^1t(x+t)f(t) dt ,then the value of 23/2f(0) is equal to _________

If f(x)=int_(0)^(x)e^(-t)f(x-t)dt then the value of f(3) is