Home
Class 11
MATHS
Prove the following by using the princip...

Prove the following by using the principle of mathematical induction for all `n in N` : `(1+3/1)(1+5/4)(1+7/9)""dot""""dot""""dot(1+((2n+1))/(n^2))=(n+1)^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following by using the Principle of mathematical induction AA n in N 2^(n+1)>2n+1

Prove the following by using the principle of mathematical induction for all n in N 1+2+3+…….+n lt 1/8 (2n+1)^2

Prove the following by using the principle of mathematical induction for all n in N 2^(3n) - 1 is divisible by 7.

Prove the following by using the principle of mathematical induction for all n in N : 1^3+2^3+3^3+""dot""""dot""""dot+n^3=((n(n+1))/2)^2

Prove the following by the principle of mathematical induction: 1+2+2^(7)=2^(n+1)-1 for all n in N

Prove the following by using the principle of mathematical induction for all n in N : 10^(2n-1)+1 is divisible by 11.

Prove the following by using the principle of mathematical induction for all n in Nvdots1+2+3+...+n<(1)/(8)(2n+1)^(2)

Prove the following by using the principle of mathematical induction for all n in Nvdots(1+(3)/(1))(1+(5)/(4))(1+(7)/(9))...(1+((2n+1))/(n^(2)))=(n+1)^(2)

Prove the following by using the principle of mathematical induction for all n in N 1+3+3^2 +…………+3^(n-1) = (3^n -1)/(2)

Prove the following by using the principle of mathematical induction for all n in N :- 1 +2 + 3 +...+n < 1/8(2n+1)^2 .