Home
Class 12
MATHS
If the function / satisfies the relation...

If the function / satisfies the relation `f(x+y)+f(x-y)=2f(x),f(y)AAx , y in Ra n df(0)!=0` , then `f(x)i sa ne v e nfu n c t ion` `f(x)i sa nod dfu n c t ion` `Iff(2)=a ,t h e nf(-2)=a` `Iff(4)=b ,t h e nf(-4)=-b`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If f satisfies the relation f(x+y)+f(x-y)=2f(x)f(y)AA x,y in K and f(0)!=0; then f(10)-f(-10)-

A Function f(x) satisfies the relation f(x)=e^(x)+int_(0)^(1)e^(x)f(t)dt* Then (a)f(0) 0

A continuous function f(x) satisfies the relation f(x)=e^(x)+int_(0)^(1)e^(x)f(t)dt then f(1)=

A function f: I to I, f(x + y) = f(x) + f(y) - 1/2 AAx, y in I , where f(1) > 0, then f(x) is

Le the be a real valued functions satisfying f(x+1) + f(x-1) = 2 f(x) for all x, y in R and f(0) = 0 , then for any n in N , f(n) =

A function y=f(x) satisfies (x+1)f'(x)-2(x^(2)+x)f(x)=((e^(x))^(2))/((x+1)),AA x>1 If f(0)=5, then f(x) is

If f(x+y)=f(x)dotf(y),\ AAx in R\ a n df(x) is a differentiability function everywhere. Find f(x) .

A function f : R rarr R satisfies the equation f(x+y) = f(x). f(y) for all x y in R, f(x) ne 0 . Suppose that the function is differentiable at x = 0 and f'(0) = 2 , then prove that f' = 2f(x) .

If f is a function satisfying f(x+y)=f(x)f(y) for all x ,""""y in X such that f(1)=3 and sum_(x=1)^nf(x)=120 , find the value of n.