Home
Class 12
MATHS
Which of the following functions are ide...

Which of the following functions are identical? `f(x)=1nx^2a n dg(x)=21nx` `f(x)=(log)_x ea n dg(x)=1/((log)_e x)` `f(x)="sin"(cos^(-1)x)a n dg(x)="cos"(sin^(-1)x)` `non eoft h e s e`

Promotional Banner

Similar Questions

Explore conceptually related problems

Which of the following pairs of functions is/are identical? (a) f(x)="tan"(tan^(-1)x)a n dg(x)="cot"(cot^(-1)x) (b)f(x)=sgn(x)a n dg(x)=sgn(sgn(x)) (c)f(x)=cot^2xdotcos^2xa n dg(x)=cot^2x-cos^2x (d)f(x)=e^(lnsec^(-1)x)a n dg(x)=sec^(-1)x

Find the range of the following functions: f(x)=log_(e)(sin x^(sin x)+1) where *0

Which of the following functions has (have) y-symmetry or origin symmetry? (i) f(x) = x^(2) sin x" "(ii) f(x) = log ((1-x)/(1+x)) (iii) f(x) = x/(e^(x)-1)+x/2 + 1

Which of the following function is (are) even, odd,or neither? f(x)=x^(2)sin xf(x)=sqrt(1+x+x^(2))-sqrt(1-x+x^(2))f(x)=log((1-x)/(1+x))f(x)=log(x+sqrt(1+x^(2)))f(x)=sin x-cos xf(x)=(e^(x)+e^(-x))/(2)

For which of the following functions f(0) exists such that f(x) is continuous at x=0f(x)=(1)/((log_(e)|x|) b.f(x)=(cos((sin|x|)/(x))) c.f(x)=x sin((pi)/(x)) d.f(x)=(1)/(1+2^( cot x))

If f(x)=|x-2|a n dg(x)=f[f(x)],t h e ng^(prime)(x)= ______ for x>20

Differentiate the following functions with respect to x:(1-22)(x sin x+cos x)(e^(x)+x^(x)+log x)

Function f(x)=sin(ln x)-cos(ln x) is

f(x)=log x, interval [1,e]