Home
Class 12
MATHS
[" Df "cos^(4)x+cos^(2)y+cos^(-1)z=pi],[...

[" Df "cos^(4)x+cos^(2)y+cos^(-1)z=pi],[p-tauquad x^(2)+y^(2)+z^(2)+2xy^(2)=1]

Promotional Banner

Similar Questions

Explore conceptually related problems

If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi , prove that x^(2)+y^(2)+z^(2)+2xyz=1

if cos^(-1)x+cos ^(-1)y+cos^(-1) z=pi prove that x^(2) +y^(2)+z^(2) +2xyz=1

If cos^(-1)x+cos^(-1)y+cos^(-1)=pi, prove that x^(2)+y^(2)+z^(2)+2xyz=1

If cos^(-1)x + cos^(-1)y + cos^(-1)z = pi , then x^(2) + y^(2) + z^(2) + 2xyz is :

If cos^(-1) x +cos^(-1)y +cos^(-1)z =pi , then prove that x^(2)+y^(2)+z^(2)+2xyz=1 .

If Cos^(-1)x+Cos^(-1)y+Cos^(-1)z=pi,"then "x^(2)+y^(2)+z^(2)+2xyz=

If cos^(-1) x + cos^(-1) y + cos^(-1) z = pi , prove that x^(2) + y^(2) + z^(2) + 2xyz = 1

If cos^(-1) x + cos^(-1) y + cos^(-1) z = pi , prove that x^(2) + y^(2) + z^(2) + 2xyz = 1

If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi, then x^(2)+y^(2)+z^(2)+2xyz=12(sin^(-1)x+sin^(-1)y+sin^(-1)z)=cos^(-1)x+cos^(-1)y+cos^(-1)zxy+yz+zx=x+y+z-1(x+(1)/(x))+(y+(1)/(y))+(z+(1)/(z))>=6

If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi, then x^(2)+y^(2)+z^(2)+xyz=0x^(2)+y^(2)+z^(2)+2xyz=0x^(2)+y^(2)+z^(2)+xyz=1x^(2)+y^(2)+z^(2)+2xyz=1