Home
Class 12
MATHS
If veca=2hati+3hatj+4hatk,veca.vecb=2 an...

If `veca=2hati+3hatj+4hatk,veca.vecb=2 and vecaxxvecb=2hati-hatk`, then `vecb` is

A

`(hati-2hatj+hatk)`

B

`(4hati-4hatj+2hatk)`

C

`1/2(3hati+7hatj+9hatk)`

D

`1/29(7hati-4hatj+14hatk)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the vector \(\vec{b}\) given the conditions, we can follow these steps: ### Step 1: Define the vectors We are given: \[ \vec{a} = 2\hat{i} + 3\hat{j} + 4\hat{k} \] Let us assume: \[ \vec{b} = x\hat{i} + y\hat{j} + z\hat{k} \] ### Step 2: Use the dot product condition The dot product \(\vec{a} \cdot \vec{b} = 2\): \[ \vec{a} \cdot \vec{b} = (2\hat{i} + 3\hat{j} + 4\hat{k}) \cdot (x\hat{i} + y\hat{j} + z\hat{k}) = 2x + 3y + 4z = 2 \] This gives us our first equation: \[ 2x + 3y + 4z = 2 \quad \text{(1)} \] ### Step 3: Use the cross product condition The cross product \(\vec{a} \times \vec{b} = 2\hat{j} - \hat{k}\): \[ \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & 4 \\ x & y & z \end{vmatrix} \] Calculating the determinant: \[ \vec{a} \times \vec{b} = \hat{i}(3z - 4y) - \hat{j}(2z - 4x) + \hat{k}(2y - 3x) \] Setting this equal to \(2\hat{j} - \hat{k}\), we equate coefficients: 1. Coefficient of \(\hat{i}\): \(3z - 4y = 0\) \quad \text{(2)} 2. Coefficient of \(\hat{j}\): \(- (2z - 4x) = 2 \Rightarrow 2z - 4x = -2\) \quad \text{(3)} 3. Coefficient of \(\hat{k}\): \(2y - 3x = -1\) \quad \text{(4)} ### Step 4: Solve the equations From equation (2): \[ 3z = 4y \Rightarrow z = \frac{4y}{3} \quad \text{(5)} \] Substituting (5) into equation (3): \[ 2\left(\frac{4y}{3}\right) - 4x = -2 \] Multiplying through by 3 to eliminate the fraction: \[ 8y - 12x = -6 \Rightarrow 12x - 8y = 6 \quad \text{(6)} \] Now substituting (5) into equation (1): \[ 2x + 3y + 4\left(\frac{4y}{3}\right) = 2 \] This simplifies to: \[ 2x + 3y + \frac{16y}{3} = 2 \] Multiplying through by 3: \[ 6x + 9y + 16y = 6 \Rightarrow 6x + 25y = 6 \quad \text{(7)} \] ### Step 5: Solve equations (6) and (7) We have: 1. \(12x - 8y = 6\) (from equation (6)) 2. \(6x + 25y = 6\) (from equation (7)) From equation (6), express \(x\) in terms of \(y\): \[ x = \frac{8y + 6}{12} = \frac{2y + \frac{3}{2}}{3} \quad \text{(8)} \] Substituting (8) into (7): \[ 6\left(\frac{2y + \frac{3}{2}}{3}\right) + 25y = 6 \] This simplifies to: \[ 4y + 3 + 25y = 6 \Rightarrow 29y = 3 \Rightarrow y = \frac{3}{29} \] ### Step 6: Find \(x\) and \(z\) Substituting \(y\) back into (8): \[ x = \frac{2\left(\frac{3}{29}\right) + \frac{3}{2}}{3} = \frac{\frac{6}{29} + \frac{3}{2}}{3} \] Finding a common denominator: \[ x = \frac{\frac{6}{29} + \frac{43.5}{29}}{3} = \frac{\frac{49.5}{29}}{3} = \frac{49.5}{87} = \frac{7}{29} \] Now using (5) to find \(z\): \[ z = \frac{4\left(\frac{3}{29}\right)}{3} = \frac{4}{29} \] ### Final vector \(\vec{b}\) Thus, we have: \[ \vec{b} = \frac{7}{29}\hat{i} + \frac{3}{29}\hat{j} + \frac{4}{29}\hat{k} \] ### Conclusion The final answer for vector \(\vec{b}\) is: \[ \vec{b} = \frac{1}{29}(7\hat{i} + 3\hat{j} + 4\hat{k}) \]
Promotional Banner

Topper's Solved these Questions

  • JEE MOCK TEST 24

    NTA MOCK TESTS|Exercise MATHS|25 Videos
  • JEE MOCK TEST 3

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If veca=2hati-3hatj+4hatk, veca.vecb=2 and veca xx vecb=hati+2hatj+hatk , then vecb is equal to

If veca=hati+hatj+hatk, veca.vecb=1 and vecaxxvecb=hatj-hatk then vecb

If veca = (hati + hatj +hatk), veca. vecb= 1 and vecaxxvecb = hatj -hatk , " then " vecb is

If veca=2hati+2hatj-hatk, vecb=3hati-hatj-hatk and vecc=hati+2hatj-3hatk then verify that vecaxx(vecbxxvecc)=(veca.vecc)vecb-(veca.vecb)vecc .

If veca=2hati-3hatj-hatk and vecb=hati+4hatj-2hatk , then vecaxxvecb is

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

If veca=hati+hatj+hatk, vecb=2hati-hatj and vecc=3hatj+hatk then verify the following: veca.(vecb+vecc)=veca.vecb+veca.vecc .

If veca=hati+hatj+hatk, vecb=2hati-hatj and vecc=3hatj+hatk then verify the following: (veca+vecb).(veca-vecb)=a^2-b^2 .

If veca=hati+hatj+hatk , vecb=2hati+hatj-hatk and vecc=4hati+3hatj+hatk then value of ((veca+vecb)xx(veca -(veca-vecb)xxvecb)))xxvecc is

Let veca=hati-hatj+hatk, vecb=2hati+hatj+hatk and vecc=hati+hatj-2hatk , then the value of [(veca, vecb, vecc)] is equal to

NTA MOCK TESTS-JEE MOCK TEST 26-MATHEMATICS
  1. The value of int((x-4))/(x^2sqrt(x-2)) dx is equal to (where , C is t...

    Text Solution

    |

  2. The equation of the curve passing through the point (1,1) and satisfyi...

    Text Solution

    |

  3. Five different games are to be distributed among 4 children randomly. ...

    Text Solution

    |

  4. Let the focus S of the parabola y^2=8x lies on the focal chord PQ of t...

    Text Solution

    |

  5. If p to (q vv r) is false, then the truth values of p,q,r are respect...

    Text Solution

    |

  6. 5/(3^2 7^2)+9/(7^2 11^2)+13/(11^2 15^2)+....oo

    Text Solution

    |

  7. If 13^99-19^93 is divided by 162, then the remainder is

    Text Solution

    |

  8. The int(0)^(pi//2)sgn(sin^2x-sinx+1/2) dx is equal to , (where , sgn ...

    Text Solution

    |

  9. If veca=2hati+3hatj+4hatk,veca.vecb=2 and vecaxxvecb=2hati-hatk, then ...

    Text Solution

    |

  10. Equation of the plane passing through the point of intersection of lin...

    Text Solution

    |

  11. The equation of the tangent to the parabola y^2=4x whose slope is posi...

    Text Solution

    |

  12. If A is 2xx2 matrix such that A[{:(" "1),(-1):}]=[{:(-1),(2):}]and A^2...

    Text Solution

    |

  13. consider the planes P1:2x-y+z=6 and P2:x+2y-z=4 having normal vec(N)1 ...

    Text Solution

    |

  14. Let I1=int0^(pi/2)(dt)/(1+t^6)and I2=int0^(pi/2)(xcosxdx)/(1+(xsinx+co...

    Text Solution

    |

  15. A wire of length 28 cm is bent to form a circular sector , then the ra...

    Text Solution

    |

  16. Let x^2 + y^2 = r^2 and xy = 1 intersect at A & B in first quadrant, I...

    Text Solution

    |

  17. If f(x)={{:(a+bcosx+csinx)/x^2,,xgt0), (9,,xge0):}} is continuous at...

    Text Solution

    |

  18. Let p and q be the length of two chords of a circle which subtend angl...

    Text Solution

    |

  19. Let ar=r^4Cr,br=(4-r)^4Cr,Ar=[{:(ar,2),(3,br):}] and A = sum (r=0)^4Ar...

    Text Solution

    |

  20. The product of all the values of |lambda|, such that the lines x+2y-...

    Text Solution

    |