Home
Class 12
MATHS
If A is 2xx2 matrix such that A[{:(" "1)...

If A is `2xx2` matrix such that `A[{:(" "1),(-1):}]=[{:(-1),(2):}]and A^2[{:(" "1),(-1):}]=[{:(1),(0):}]` , then trace of A is (where the trace of the matrix is the sum of all principal diagonal elements of the matrix )

A

1

B

0

C

2

D

5

Text Solution

AI Generated Solution

The correct Answer is:
To find the trace of the matrix \( A \), we will start by defining the matrix \( A \) as follows: Let: \[ A = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \] Given the conditions in the problem, we have: 1. \( A \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} -1 \\ 2 \end{pmatrix} \) 2. \( A^2 \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \) ### Step 1: Solve the first condition From the first condition: \[ A \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} \alpha - \beta \\ \gamma - \delta \end{pmatrix} = \begin{pmatrix} -1 \\ 2 \end{pmatrix} \] This gives us two equations: 1. \( \alpha - \beta = -1 \) (Equation 1) 2. \( \gamma - \delta = 2 \) (Equation 2) ### Step 2: Solve the second condition Now, we need to calculate \( A^2 \) and apply the second condition: \[ A^2 = A \cdot A = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} = \begin{pmatrix} \alpha^2 + \beta \gamma & \alpha \beta + \beta \delta \\ \gamma \alpha + \delta \gamma & \gamma \beta + \delta^2 \end{pmatrix} \] Now applying the second condition: \[ A^2 \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} \alpha^2 + \beta \gamma & \alpha \beta + \beta \delta \\ \gamma \alpha + \delta \gamma & \gamma \beta + \delta^2 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} \alpha^2 + \beta \gamma - (\alpha \beta + \beta \delta) \\ \gamma \alpha + \delta \gamma - (\gamma \beta + \delta^2) \end{pmatrix} \] This should equal: \[ \begin{pmatrix} 1 \\ 0 \end{pmatrix} \] This gives us two more equations: 1. \( \alpha^2 + \beta \gamma - \alpha \beta - \beta \delta = 1 \) (Equation 3) 2. \( \gamma \alpha + \delta \gamma - \gamma \beta - \delta^2 = 0 \) (Equation 4) ### Step 3: Substitute and solve From Equation 1, we have \( \alpha = \beta - 1 \). Substitute \( \alpha \) into Equation 3: \[ (\beta - 1)^2 + \beta \gamma - (\beta - 1) \beta - \beta \delta = 1 \] Expanding this: \[ \beta^2 - 2\beta + 1 + \beta \gamma - \beta^2 + \beta - \beta \delta = 1 \] Simplifying: \[ \beta \gamma - \beta \delta - \beta + 1 = 1 \implies \beta \gamma - \beta \delta - \beta = 0 \implies \beta (\gamma - \delta - 1) = 0 \] This gives us two cases: 1. \( \beta = 0 \) 2. \( \gamma - \delta - 1 = 0 \implies \gamma = \delta + 1 \) ### Step 4: Solve for \( \beta = 0 \) If \( \beta = 0 \): From Equation 1: \( \alpha = -1 \) From Equation 2: \( \gamma - \delta = 2 \implies \gamma = \delta + 2 \) Substituting into Equation 4: \[ 0 + \delta(\delta + 2) - 0 - \delta^2 = 0 \implies \delta^2 + 2\delta - \delta^2 = 0 \implies 2\delta = 0 \implies \delta = 0 \] Thus, \( \gamma = 2 \). ### Step 5: Find the trace of \( A \) Now we have: \[ A = \begin{pmatrix} -1 & 0 \\ 2 & 0 \end{pmatrix} \] The trace of \( A \) is: \[ \text{Trace}(A) = \alpha + \delta = -1 + 0 = -1 \] ### Final Answer The trace of \( A \) is \( -1 \).
Promotional Banner

Topper's Solved these Questions

  • JEE MOCK TEST 24

    NTA MOCK TESTS|Exercise MATHS|25 Videos
  • JEE MOCK TEST 3

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

The sum of the principal diagonal elements of a square matrix is called

The sum of the principal diagonal elements of a square matrix is called

Let A+2B=[{:(2,4,0),(6,-3,3),(-5,3,5):}] and 2A-B=[{:(6,-2,4),(6,1,5),(6,3,4):}] , then tr (A) - tr (B) is equal to (where , tr (A) =n trace of matrix x A i.e. . Sum of the principle diagonal elements of matrix A)

If the trace of the matrix A is 5, and the trace of the matrix B is 7, then find the matrix (3A + 2B).

Let psi_(A) be defined as trace of a matrix which is sum of diagonal elements of a square matrix.psi_(lambda A+mu B)=

Trace of a scalar matrix of order 4xx4 whose one of the principal diagonal elements is 4 is _______ .

Let M be a 3xx3 matrix satisfying M[{:(0),(1),(0):}]=[{:(-1),(2),(3):}],M[{:(1),(-1),(0):}]=[{:(1),(1),(1):}]=[{:(0),(0),(12):}] then the sum of the diagonal entries of M is

If A=[(2, 1,-1),(3, 5,2),(1, 6, 1)] , then tr(Aadj(adjA)) is equal to (where, tr (P) denotes the trace of the matrix P i.e. the sum of all the diagonal elements of the matrix P and adj(P) denotes the adjoint of matrix P)

If A=[{:(3,-3,4),(2,-3,4),(0,-1,1):}] , then the trace of the matrix Adj(AdjA) is

NTA MOCK TESTS-JEE MOCK TEST 26-MATHEMATICS
  1. The value of int((x-4))/(x^2sqrt(x-2)) dx is equal to (where , C is t...

    Text Solution

    |

  2. The equation of the curve passing through the point (1,1) and satisfyi...

    Text Solution

    |

  3. Five different games are to be distributed among 4 children randomly. ...

    Text Solution

    |

  4. Let the focus S of the parabola y^2=8x lies on the focal chord PQ of t...

    Text Solution

    |

  5. If p to (q vv r) is false, then the truth values of p,q,r are respect...

    Text Solution

    |

  6. 5/(3^2 7^2)+9/(7^2 11^2)+13/(11^2 15^2)+....oo

    Text Solution

    |

  7. If 13^99-19^93 is divided by 162, then the remainder is

    Text Solution

    |

  8. The int(0)^(pi//2)sgn(sin^2x-sinx+1/2) dx is equal to , (where , sgn ...

    Text Solution

    |

  9. If veca=2hati+3hatj+4hatk,veca.vecb=2 and vecaxxvecb=2hati-hatk, then ...

    Text Solution

    |

  10. Equation of the plane passing through the point of intersection of lin...

    Text Solution

    |

  11. The equation of the tangent to the parabola y^2=4x whose slope is posi...

    Text Solution

    |

  12. If A is 2xx2 matrix such that A[{:(" "1),(-1):}]=[{:(-1),(2):}]and A^2...

    Text Solution

    |

  13. consider the planes P1:2x-y+z=6 and P2:x+2y-z=4 having normal vec(N)1 ...

    Text Solution

    |

  14. Let I1=int0^(pi/2)(dt)/(1+t^6)and I2=int0^(pi/2)(xcosxdx)/(1+(xsinx+co...

    Text Solution

    |

  15. A wire of length 28 cm is bent to form a circular sector , then the ra...

    Text Solution

    |

  16. Let x^2 + y^2 = r^2 and xy = 1 intersect at A & B in first quadrant, I...

    Text Solution

    |

  17. If f(x)={{:(a+bcosx+csinx)/x^2,,xgt0), (9,,xge0):}} is continuous at...

    Text Solution

    |

  18. Let p and q be the length of two chords of a circle which subtend angl...

    Text Solution

    |

  19. Let ar=r^4Cr,br=(4-r)^4Cr,Ar=[{:(ar,2),(3,br):}] and A = sum (r=0)^4Ar...

    Text Solution

    |

  20. The product of all the values of |lambda|, such that the lines x+2y-...

    Text Solution

    |