Home
Class 12
MATHS
Let p and q be the length of two chords ...

Let p and q be the length of two chords of a circle which subtend angles `36^@ and 60^@` respectively at the centre of the circle . Then , the angle (in radian) subtended by the chord of length p + q at the centre of the circle is (use ` pi=3.1` )

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the angle subtended by the chord of length \( p + q \) at the center of the circle, given that the lengths of the chords \( p \) and \( q \) subtend angles of \( 36^\circ \) and \( 60^\circ \) respectively. ### Step-by-Step Solution: 1. **Convert Angles to Radians:** - The angle \( 36^\circ \) in radians is given by: \[ 36^\circ = \frac{36 \times \pi}{180} = \frac{36\pi}{180} = \frac{\pi}{5} \text{ radians} \] - The angle \( 60^\circ \) in radians is given by: \[ 60^\circ = \frac{60 \times \pi}{180} = \frac{60\pi}{180} = \frac{\pi}{3} \text{ radians} \] 2. **Use the Chord Length Formula:** - The length of a chord \( L \) that subtends an angle \( \theta \) at the center of a circle of radius \( r \) is given by: \[ L = 2r \sin\left(\frac{\theta}{2}\right) \] - For chord \( p \) subtending \( 36^\circ \): \[ p = 2r \sin\left(\frac{36^\circ}{2}\right) = 2r \sin(18^\circ) \] - For chord \( q \) subtending \( 60^\circ \): \[ q = 2r \sin\left(\frac{60^\circ}{2}\right) = 2r \sin(30^\circ) = 2r \cdot \frac{1}{2} = r \] 3. **Express \( p + q \):** - Now, we can express \( p + q \): \[ p + q = 2r \sin(18^\circ) + r = r(2\sin(18^\circ) + 1) \] 4. **Find the Angle Subtended by Chord \( p + q \):** - Let \( \theta \) be the angle subtended by the chord \( p + q \): \[ p + q = 2r \sin\left(\frac{\theta}{2}\right) \] - Setting the two expressions for \( p + q \) equal: \[ r(2\sin(18^\circ) + 1) = 2r \sin\left(\frac{\theta}{2}\right) \] - Dividing both sides by \( r \) (assuming \( r \neq 0 \)): \[ 2\sin(18^\circ) + 1 = 2\sin\left(\frac{\theta}{2}\right) \] - Rearranging gives: \[ \sin\left(\frac{\theta}{2}\right) = \sin(18^\circ) + \frac{1}{2} \] 5. **Calculate \( \theta \):** - Using the known value \( \sin(18^\circ) \approx 0.309 \): \[ \sin\left(\frac{\theta}{2}\right) \approx 0.309 + 0.5 = 0.809 \] - Now, find \( \frac{\theta}{2} \): \[ \frac{\theta}{2} = \sin^{-1}(0.809) \] - Using a calculator, we find: \[ \frac{\theta}{2} \approx 0.927 \text{ radians} \] - Therefore: \[ \theta \approx 2 \times 0.927 \approx 1.854 \text{ radians} \] 6. **Final Result:** - The angle subtended by the chord of length \( p + q \) at the center of the circle is approximately \( \theta \approx 1.854 \text{ radians} \).
Promotional Banner

Topper's Solved these Questions

  • JEE MOCK TEST 24

    NTA MOCK TESTS|Exercise MATHS|25 Videos
  • JEE MOCK TEST 3

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
NTA MOCK TESTS-JEE MOCK TEST 26-MATHEMATICS
  1. The value of int((x-4))/(x^2sqrt(x-2)) dx is equal to (where , C is t...

    Text Solution

    |

  2. The equation of the curve passing through the point (1,1) and satisfyi...

    Text Solution

    |

  3. Five different games are to be distributed among 4 children randomly. ...

    Text Solution

    |

  4. Let the focus S of the parabola y^2=8x lies on the focal chord PQ of t...

    Text Solution

    |

  5. If p to (q vv r) is false, then the truth values of p,q,r are respect...

    Text Solution

    |

  6. 5/(3^2 7^2)+9/(7^2 11^2)+13/(11^2 15^2)+....oo

    Text Solution

    |

  7. If 13^99-19^93 is divided by 162, then the remainder is

    Text Solution

    |

  8. The int(0)^(pi//2)sgn(sin^2x-sinx+1/2) dx is equal to , (where , sgn ...

    Text Solution

    |

  9. If veca=2hati+3hatj+4hatk,veca.vecb=2 and vecaxxvecb=2hati-hatk, then ...

    Text Solution

    |

  10. Equation of the plane passing through the point of intersection of lin...

    Text Solution

    |

  11. The equation of the tangent to the parabola y^2=4x whose slope is posi...

    Text Solution

    |

  12. If A is 2xx2 matrix such that A[{:(" "1),(-1):}]=[{:(-1),(2):}]and A^2...

    Text Solution

    |

  13. consider the planes P1:2x-y+z=6 and P2:x+2y-z=4 having normal vec(N)1 ...

    Text Solution

    |

  14. Let I1=int0^(pi/2)(dt)/(1+t^6)and I2=int0^(pi/2)(xcosxdx)/(1+(xsinx+co...

    Text Solution

    |

  15. A wire of length 28 cm is bent to form a circular sector , then the ra...

    Text Solution

    |

  16. Let x^2 + y^2 = r^2 and xy = 1 intersect at A & B in first quadrant, I...

    Text Solution

    |

  17. If f(x)={{:(a+bcosx+csinx)/x^2,,xgt0), (9,,xge0):}} is continuous at...

    Text Solution

    |

  18. Let p and q be the length of two chords of a circle which subtend angl...

    Text Solution

    |

  19. Let ar=r^4Cr,br=(4-r)^4Cr,Ar=[{:(ar,2),(3,br):}] and A = sum (r=0)^4Ar...

    Text Solution

    |

  20. The product of all the values of |lambda|, such that the lines x+2y-...

    Text Solution

    |