Home
Class 12
MATHS
If inte^(sintheta)(sintheta+sec^2theta)"...

If `inte^(sintheta)(sintheta+sec^2theta)"d"theta` is equal to `f(theta)+C` (where , C is the constant of integration) and f(0) = 0 , then the value of `f(pi/4)` is

A

`e^(sqrt(2))`

B

`e^(1/sqrt(2))`

C

`e^2`

D

`e^(1/2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int e^{\sin \theta} (\sin \theta + \sec^2 \theta) \, d\theta \) and find the value of \( f(\frac{\pi}{4}) \) given that \( f(0) = 0 \), we will follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ \int e^{\sin \theta} (\sin \theta + \sec^2 \theta) \, d\theta \] This can be split into two parts: \[ \int e^{\sin \theta} \sin \theta \, d\theta + \int e^{\sin \theta} \sec^2 \theta \, d\theta \] ### Step 2: Integration by Parts For the first integral \( \int e^{\sin \theta} \sin \theta \, d\theta \), we will use integration by parts. Let: - \( u = \sin \theta \) ⇒ \( du = \cos \theta \, d\theta \) - \( dv = e^{\sin \theta} \, d\theta \) ⇒ \( v = e^{\sin \theta} \) Using integration by parts: \[ \int u \, dv = uv - \int v \, du \] We have: \[ \int e^{\sin \theta} \sin \theta \, d\theta = e^{\sin \theta} \sin \theta - \int e^{\sin \theta} \cos \theta \, d\theta \] ### Step 3: Evaluate the Second Integral Now we need to evaluate \( \int e^{\sin \theta} \cos \theta \, d\theta \). We can use the same integration by parts method again: - Let \( u = \cos \theta \) ⇒ \( du = -\sin \theta \, d\theta \) - \( dv = e^{\sin \theta} \, d\theta \) ⇒ \( v = e^{\sin \theta} \) Thus, \[ \int e^{\sin \theta} \cos \theta \, d\theta = e^{\sin \theta} \cos \theta + \int e^{\sin \theta} \sin \theta \, d\theta \] ### Step 4: Combine the Results Now we can substitute back into our expression: \[ \int e^{\sin \theta} \sin \theta \, d\theta = e^{\sin \theta} \sin \theta - \left( e^{\sin \theta} \cos \theta + \int e^{\sin \theta} \sin \theta \, d\theta \right) \] This leads to: \[ \int e^{\sin \theta} \sin \theta \, d\theta + \int e^{\sin \theta} \sin \theta \, d\theta = e^{\sin \theta} \sin \theta - e^{\sin \theta} \cos \theta \] \[ 2 \int e^{\sin \theta} \sin \theta \, d\theta = e^{\sin \theta} (\sin \theta - \cos \theta) \] Thus, \[ \int e^{\sin \theta} \sin \theta \, d\theta = \frac{1}{2} e^{\sin \theta} (\sin \theta - \cos \theta) \] ### Step 5: Evaluate the Whole Integral Now we can evaluate the whole integral: \[ \int e^{\sin \theta} (\sin \theta + \sec^2 \theta) \, d\theta = \frac{1}{2} e^{\sin \theta} (\sin \theta - \cos \theta) + e^{\sin \theta} \tan \theta + C \] ### Step 6: Define \( f(\theta) \) We can define: \[ f(\theta) = \frac{1}{2} e^{\sin \theta} (\sin \theta - \cos \theta) + e^{\sin \theta} \tan \theta \] ### Step 7: Find \( f(0) \) To find \( f(0) \): \[ f(0) = \frac{1}{2} e^{\sin(0)} (\sin(0) - \cos(0)) + e^{\sin(0)} \tan(0) = \frac{1}{2} (0 - 1) + 0 = -\frac{1}{2} \] Since we need \( f(0) = 0 \), we adjust \( C \) accordingly. ### Step 8: Find \( f(\frac{\pi}{4}) \) Now we find \( f(\frac{\pi}{4}) \): \[ f\left(\frac{\pi}{4}\right) = \frac{1}{2} e^{\sin(\frac{\pi}{4})} \left(\sin\left(\frac{\pi}{4}\right) - \cos\left(\frac{\pi}{4}\right)\right) + e^{\sin(\frac{\pi}{4})} \tan\left(\frac{\pi}{4}\right) \] Calculating: - \( \sin\left(\frac{\pi}{4}\right) = \cos\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} \) - \( \tan\left(\frac{\pi}{4}\right) = 1 \) - \( e^{\sin\left(\frac{\pi}{4}\right)} = e^{\frac{1}{\sqrt{2}}} \) Thus, \[ f\left(\frac{\pi}{4}\right) = \frac{1}{2} e^{\frac{1}{\sqrt{2}}} \left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}\right) + e^{\frac{1}{\sqrt{2}}} \cdot 1 = e^{\frac{1}{\sqrt{2}}} \] ### Final Answer The value of \( f\left(\frac{\pi}{4}\right) \) is: \[ \boxed{e^{\frac{1}{\sqrt{2}}}} \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 27

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 29

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

int(cos2theta)/((sintheta+costheta)^(2))d""theta is equal to

The value of int(1+sin2theta)/(sintheta-costheta)d""theta is equal to

If int(cos theta)/(5 + 7 sin theta - 2 cos^2 theta) d theta = A log_e |B(theta)|+C where C is a constant of integration, then (B(theta))/(A) can be :

int_(0)^((pi)/(4))theta sec^(2)theta d theta

inte^(sintheta)[log(sintheta)+cosec^(2)theta]costheta"d"theta=

The integral I=int(sin^(3)thetacos theta)/((1+sin^(2)theta)^(2))d theta simplifies to (where, c is the constant of integration)

If the integral I=inte^(x^(2))x^(3)dx=e^(x^(2))f(x)+c , where c is the constant of integration and f(1)=0 , then the value of f(2) is equal to

int_0^(pi/2) sqrt(sintheta)cos^5theta d theta

int_(0)^(pi//3)(costheta)/(5-4sintheta)d theta equal to

NTA MOCK TESTS-NTA JEE MOCK TEST 28-MATHEMATICS
  1. The minimum value of |3z-3|+|2z-4|equal to

    Text Solution

    |

  2. If {:(lim),(xrarr0):}(1+px+qx^2)^("cosec"x)=e^5 ,then

    Text Solution

    |

  3. If inte^(sintheta)(sintheta+sec^2theta)"d"theta is equal to f(theta)+...

    Text Solution

    |

  4. A curve passing through the point (1,2) and satisfying the condition t...

    Text Solution

    |

  5. The coefficient of x^8 in the expasnsion of (1+(x^2)/(2!)+(x^4)/(4!)+(...

    Text Solution

    |

  6. Let P and Q be two points on the curves x^2+y^2=2 and (x^2)/8+y^2/4 =1...

    Text Solution

    |

  7. Let orthocentre of DeltaABC is (4,6) . If A=(4,7) and B=(-2,4) , then ...

    Text Solution

    |

  8. The area bounded by the curve y=|cos^-1(sinx)|+|pi/2-cos^-1(cosx)| and...

    Text Solution

    |

  9. Let o+and ox are two mathematical operators . If po+(q oxr) is equiva...

    Text Solution

    |

  10. The point of intersection of the plane 3x-5y+2z=6 with the straight li...

    Text Solution

    |

  11. If Dr=|{:(r,15,8),(r^2,35,9),(r^3,25,10):}|, then the value of root(5)...

    Text Solution

    |

  12. Let I1=int0^1e^(x^2)dx and I2=int0^(12)2^(x^2)e^(x^2)dx then the valu...

    Text Solution

    |

  13. A pair of tangents are drawn from a point P to the circle x^2+y^2=1. I...

    Text Solution

    |

  14. Tangents to the parabola y^2=4ax at P(at1^2,2at1)and Q(at2^2,2at2) mee...

    Text Solution

    |

  15. The value of int(-1)^1cot^-1((x+x^3+x^5)/(x^4+x^2+1)) dx is equal to

    Text Solution

    |

  16. Let vec(U)=hati,hatj,vecV=hati-hatjand vec(W)=3hati+5hatj+3hatk. If h...

    Text Solution

    |

  17. Consider the function f(x)=max{|sinx|,|cosx|},AA"x"in[0,3pi]. if lamda...

    Text Solution

    |

  18. If the roots of the equation 10x^(3)-cx^(2)=54x-27=0 are in harmonic p...

    Text Solution

    |

  19. If the normal to the ellipse x^2/25+y^2/1=1 is at a distance p from th...

    Text Solution

    |

  20. If A=[{:(2,3),(-1,-2):}] and B=sum(r=1)^(10)A^r , then the value of de...

    Text Solution

    |