Home
Class 12
MATHS
Let o+and ox are two mathematical operat...

Let `o+and ox` are two mathematical operators . If `po+(q oxr)` is equivalent to `((p^^q)rArrr)` , then `o+ and ox`

A

can be `vv and ^^` respectively

B

can be `^^ and vv` respectively

C

can both be `rArr`

D

can be `rArr and hArr` respectively

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the mathematical operators \( o+ \) and \( o_x \) such that the expression \( p o+ (q o_x r) \) is equivalent to \( (p \land q) \Rightarrow r \). ### Step 1: Understand the Logical Operators We need to identify the logical operators that can replace \( o+ \) and \( o_x \). The logical operators we commonly use are: - Conjunction (\( \land \)): AND - Disjunction (\( \lor \)): OR - Implication (\( \Rightarrow \)): If...then - Biconditional (\( \Leftrightarrow \)): If and only if ### Step 2: Create the Truth Table for \( (p \land q) \Rightarrow r \) The expression \( (p \land q) \Rightarrow r \) can be analyzed using a truth table: | p | q | r | p ∧ q | (p ∧ q) ⇒ r | |-------|-------|-------|-------|-------------| | T | T | T | T | T | | T | T | F | T | F | | T | F | T | F | T | | T | F | F | F | T | | F | T | T | F | T | | F | T | F | F | T | | F | F | T | F | T | | F | F | F | F | T | From the truth table, we can see that \( (p \land q) \Rightarrow r \) is false only when \( p \) and \( q \) are true and \( r \) is false. In all other cases, it is true. ### Step 3: Analyze the Expression \( p o+ (q o_x r) \) We need to determine the operators \( o+ \) and \( o_x \) such that the expression \( p o+ (q o_x r) \) yields the same truth values as \( (p \land q) \Rightarrow r \). ### Step 4: Testing Possible Operators We will test various combinations of logical operators for \( o+ \) and \( o_x \). 1. **Option 1**: Let \( o+ \) be Disjunction (\( \lor \)) and \( o_x \) be Conjunction (\( \land \)). - Expression: \( p \lor (q \land r) \) - Truth Table: | p | q | r | q ∧ r | p ∨ (q ∧ r) | |-------|-------|-------|-------|-------------| | T | T | T | T | T | | T | T | F | F | T | | T | F | T | F | T | | T | F | F | F | T | | F | T | T | T | T | | F | T | F | F | F | | F | F | T | F | T | | F | F | F | F | F | This does not match the original expression. 2. **Option 2**: Let \( o+ \) be Conjunction (\( \land \)) and \( o_x \) be Disjunction (\( \lor \)). - Expression: \( p \land (q \lor r) \) - Truth Table: | p | q | r | q ∨ r | p ∧ (q ∨ r) | |-------|-------|-------|-------|-------------| | T | T | T | T | T | | T | T | F | T | T | | T | F | T | T | T | | T | F | F | F | F | | F | T | T | T | F | | F | T | F | T | F | | F | F | T | T | F | | F | F | F | F | F | This does not match the original expression. 3. **Option 3**: Let \( o+ \) and \( o_x \) both be Implication (\( \Rightarrow \)). - Expression: \( p \Rightarrow (q \Rightarrow r) \) - Truth Table: | p | q | r | q ⇒ r | p ⇒ (q ⇒ r) | |-------|-------|-------|-------|--------------| | T | T | T | T | T | | T | T | F | F | F | | T | F | T | T | T | | T | F | F | T | T | | F | T | T | T | T | | F | T | F | F | T | | F | F | T | T | T | | F | F | F | T | T | This matches the original expression. ### Conclusion The operators \( o+ \) and \( o_x \) are both Implication (\( \Rightarrow \)).
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 27

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 29

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

p to ~(p^^~q) is equivalent to

(p to q)^^(q to ~p) is equivalent to

Let o+ and ox are two mathematical operators. If p o+ (p ox q) is not a tautology, then o+ and ox can be

(p to q) wedge (q to -p) is equivalent to

If p and q are two statements, then p vv ~ ( p Rightarrow ~ q) is equivalent to

Let p, q and r be three statements, then (p to q) to r is equivalent to

For two statements p and q, the statement ~(pvv(~q)) is equivalent to

Show that ~(p to ~q) are not equivalent to p to q

NTA MOCK TESTS-NTA JEE MOCK TEST 28-MATHEMATICS
  1. The minimum value of |3z-3|+|2z-4|equal to

    Text Solution

    |

  2. If {:(lim),(xrarr0):}(1+px+qx^2)^("cosec"x)=e^5 ,then

    Text Solution

    |

  3. If inte^(sintheta)(sintheta+sec^2theta)"d"theta is equal to f(theta)+...

    Text Solution

    |

  4. A curve passing through the point (1,2) and satisfying the condition t...

    Text Solution

    |

  5. The coefficient of x^8 in the expasnsion of (1+(x^2)/(2!)+(x^4)/(4!)+(...

    Text Solution

    |

  6. Let P and Q be two points on the curves x^2+y^2=2 and (x^2)/8+y^2/4 =1...

    Text Solution

    |

  7. Let orthocentre of DeltaABC is (4,6) . If A=(4,7) and B=(-2,4) , then ...

    Text Solution

    |

  8. The area bounded by the curve y=|cos^-1(sinx)|+|pi/2-cos^-1(cosx)| and...

    Text Solution

    |

  9. Let o+and ox are two mathematical operators . If po+(q oxr) is equiva...

    Text Solution

    |

  10. The point of intersection of the plane 3x-5y+2z=6 with the straight li...

    Text Solution

    |

  11. If Dr=|{:(r,15,8),(r^2,35,9),(r^3,25,10):}|, then the value of root(5)...

    Text Solution

    |

  12. Let I1=int0^1e^(x^2)dx and I2=int0^(12)2^(x^2)e^(x^2)dx then the valu...

    Text Solution

    |

  13. A pair of tangents are drawn from a point P to the circle x^2+y^2=1. I...

    Text Solution

    |

  14. Tangents to the parabola y^2=4ax at P(at1^2,2at1)and Q(at2^2,2at2) mee...

    Text Solution

    |

  15. The value of int(-1)^1cot^-1((x+x^3+x^5)/(x^4+x^2+1)) dx is equal to

    Text Solution

    |

  16. Let vec(U)=hati,hatj,vecV=hati-hatjand vec(W)=3hati+5hatj+3hatk. If h...

    Text Solution

    |

  17. Consider the function f(x)=max{|sinx|,|cosx|},AA"x"in[0,3pi]. if lamda...

    Text Solution

    |

  18. If the roots of the equation 10x^(3)-cx^(2)=54x-27=0 are in harmonic p...

    Text Solution

    |

  19. If the normal to the ellipse x^2/25+y^2/1=1 is at a distance p from th...

    Text Solution

    |

  20. If A=[{:(2,3),(-1,-2):}] and B=sum(r=1)^(10)A^r , then the value of de...

    Text Solution

    |