Home
Class 12
MATHS
If Dr=|{:(r,15,8),(r^2,35,9),(r^3,25,10)...

If `D_r=|{:(r,15,8),(r^2,35,9),(r^3,25,10):}|`, then the value of `root(5)(((-1/100)sum_(r=1)^5D_r)-37)` is equal to

A

5

B

2

C

9

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression given in the question step by step. Let's break it down: ### Step 1: Define the Determinant \( D_r \) The determinant \( D_r \) is given by: \[ D_r = \begin{vmatrix} r & 15 & 8 \\ r^2 & 35 & 9 \\ r^3 & 25 & 10 \end{vmatrix} \] ### Step 2: Calculate the Determinant \( D_r \) Using the formula for the determinant of a 3x3 matrix: \[ D = a(ei - fh) - b(di - fg) + c(dh - eg) \] where the matrix is: \[ \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} \] we can substitute \( a = r, b = 15, c = 8, d = r^2, e = 35, f = 9, g = r^3, h = 25, i = 10 \). Calculating the determinant: \[ D_r = r(35 \cdot 10 - 9 \cdot 25) - 15(r^2 \cdot 10 - 9 \cdot r^3) + 8(r^2 \cdot 25 - 35 \cdot r^3) \] Calculating each term: 1. \( 35 \cdot 10 - 9 \cdot 25 = 350 - 225 = 125 \) 2. \( r(125) = 125r \) 3. \( r^2 \cdot 10 - 9 \cdot r^3 = 10r^2 - 9r^3 \) 4. \( -15(10r^2 - 9r^3) = -150r^2 + 135r^3 \) 5. \( r^2 \cdot 25 - 35 \cdot r^3 = 25r^2 - 35r^3 \) 6. \( 8(25r^2 - 35r^3) = 200r^2 - 280r^3 \) Combining all terms: \[ D_r = 125r + (-150r^2 + 135r^3) + (200r^2 - 280r^3) \] \[ D_r = 125r + (-150r^2 + 200r^2) + (135r^3 - 280r^3) \] \[ D_r = 125r + 50r^2 - 145r^3 \] ### Step 3: Calculate the Summation \( \sum_{r=1}^{5} D_r \) Now we need to compute: \[ \sum_{r=1}^{5} D_r = \sum_{r=1}^{5} (125r + 50r^2 - 145r^3) \] This can be separated into three summations: \[ = 125 \sum_{r=1}^{5} r + 50 \sum_{r=1}^{5} r^2 - 145 \sum_{r=1}^{5} r^3 \] Using the formulas: - \( \sum_{r=1}^{n} r = \frac{n(n+1)}{2} \) - \( \sum_{r=1}^{n} r^2 = \frac{n(n+1)(2n+1)}{6} \) - \( \sum_{r=1}^{n} r^3 = \left( \frac{n(n+1)}{2} \right)^2 \) For \( n = 5 \): 1. \( \sum_{r=1}^{5} r = \frac{5(5+1)}{2} = 15 \) 2. \( \sum_{r=1}^{5} r^2 = \frac{5(5+1)(2 \cdot 5 + 1)}{6} = 55 \) 3. \( \sum_{r=1}^{5} r^3 = \left( \frac{5(5+1)}{2} \right)^2 = 225 \) Substituting these values: \[ = 125(15) + 50(55) - 145(225) \] Calculating each term: 1. \( 125 \cdot 15 = 1875 \) 2. \( 50 \cdot 55 = 2750 \) 3. \( 145 \cdot 225 = 32625 \) Now, summing these: \[ \sum_{r=1}^{5} D_r = 1875 + 2750 - 32625 = -27800 \] ### Step 4: Calculate the Final Expression Now we need to evaluate: \[ \sqrt[5]{\left(-\frac{1}{100} \sum_{r=1}^{5} D_r\right) - 37} \] Substituting \( \sum_{r=1}^{5} D_r = -27800 \): \[ = \sqrt[5]{-\frac{1}{100}(-27800) - 37} \] \[ = \sqrt[5]{\frac{27800}{100} - 37} \] \[ = \sqrt[5]{278 - 37} \] \[ = \sqrt[5]{241} \] ### Step 5: Final Calculation Since \( 241 \) does not have a perfect fifth root, we can approximate or conclude that the answer is simply \( \sqrt[5]{241} \).
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 27

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 29

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

sum_(r = 1)^(n) r. r! is equal to

The value of sum_(r=0)^(10)((10)/(r))((15)/(14-r)) is equal to.

sum_(r=0)^(n)r(r+1)(r+2)(r+3) is equal to

The value of sum sum_(r=1)^(10)(2^(r-1)+8r-3) is equal to :

If Delta_(r)=|{:(r,r-1),(r-1,r):}| where is a natural number, the value of root(10)(sum_(r=1)^(1024))Delta_(r) is

The value of sum_(r = 16)^(30)(r + 2)(r - 3) is equal to :

The value of sum_(r=2)^(100)(3^(r)(2-2r))/(r(r+1)(r+2)) is equal to

NTA MOCK TESTS-NTA JEE MOCK TEST 28-MATHEMATICS
  1. The minimum value of |3z-3|+|2z-4|equal to

    Text Solution

    |

  2. If {:(lim),(xrarr0):}(1+px+qx^2)^("cosec"x)=e^5 ,then

    Text Solution

    |

  3. If inte^(sintheta)(sintheta+sec^2theta)"d"theta is equal to f(theta)+...

    Text Solution

    |

  4. A curve passing through the point (1,2) and satisfying the condition t...

    Text Solution

    |

  5. The coefficient of x^8 in the expasnsion of (1+(x^2)/(2!)+(x^4)/(4!)+(...

    Text Solution

    |

  6. Let P and Q be two points on the curves x^2+y^2=2 and (x^2)/8+y^2/4 =1...

    Text Solution

    |

  7. Let orthocentre of DeltaABC is (4,6) . If A=(4,7) and B=(-2,4) , then ...

    Text Solution

    |

  8. The area bounded by the curve y=|cos^-1(sinx)|+|pi/2-cos^-1(cosx)| and...

    Text Solution

    |

  9. Let o+and ox are two mathematical operators . If po+(q oxr) is equiva...

    Text Solution

    |

  10. The point of intersection of the plane 3x-5y+2z=6 with the straight li...

    Text Solution

    |

  11. If Dr=|{:(r,15,8),(r^2,35,9),(r^3,25,10):}|, then the value of root(5)...

    Text Solution

    |

  12. Let I1=int0^1e^(x^2)dx and I2=int0^(12)2^(x^2)e^(x^2)dx then the valu...

    Text Solution

    |

  13. A pair of tangents are drawn from a point P to the circle x^2+y^2=1. I...

    Text Solution

    |

  14. Tangents to the parabola y^2=4ax at P(at1^2,2at1)and Q(at2^2,2at2) mee...

    Text Solution

    |

  15. The value of int(-1)^1cot^-1((x+x^3+x^5)/(x^4+x^2+1)) dx is equal to

    Text Solution

    |

  16. Let vec(U)=hati,hatj,vecV=hati-hatjand vec(W)=3hati+5hatj+3hatk. If h...

    Text Solution

    |

  17. Consider the function f(x)=max{|sinx|,|cosx|},AA"x"in[0,3pi]. if lamda...

    Text Solution

    |

  18. If the roots of the equation 10x^(3)-cx^(2)=54x-27=0 are in harmonic p...

    Text Solution

    |

  19. If the normal to the ellipse x^2/25+y^2/1=1 is at a distance p from th...

    Text Solution

    |

  20. If A=[{:(2,3),(-1,-2):}] and B=sum(r=1)^(10)A^r , then the value of de...

    Text Solution

    |