Home
Class 12
MATHS
Let vec(U)=hati,hatj,vecV=hati-hatjand v...

Let `vec(U)=hati,hatj,vecV=hati-hatjand vec(W)=3hati+5hatj+3hatk. ` If `hat(n) =0` then `|vecW.hatn|` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to find the value of \(|\vec{W} \cdot \hat{n}|\), given that \(\hat{n} = 0\) means that \(\hat{n}\) is a unit vector perpendicular to both \(\vec{U}\) and \(\vec{V}\). ### Step 1: Identify the vectors We have: - \(\vec{U} = \hat{i} + \hat{j}\) - \(\vec{V} = \hat{i} - \hat{j}\) - \(\vec{W} = 3\hat{i} + 5\hat{j} + 3\hat{k}\) ### Step 2: Find the cross product \(\vec{U} \times \vec{V}\) To find a vector \(\hat{n}\) that is perpendicular to both \(\vec{U}\) and \(\vec{V}\), we compute the cross product \(\vec{U} \times \vec{V}\). Using the determinant form: \[ \vec{U} \times \vec{V} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 0 \\ 1 & -1 & 0 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i} \begin{vmatrix} 1 & 0 \\ -1 & 0 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & 0 \\ 1 & 0 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & 1 \\ 1 & -1 \end{vmatrix} \] \[ = \hat{i}(0) - \hat{j}(0) + \hat{k}(-1 - 1) = -2\hat{k} \] Thus, \(\vec{U} \times \vec{V} = -2\hat{k}\). ### Step 3: Normalize the cross product to find \(\hat{n}\) To find the unit vector \(\hat{n}\), we need to normalize \(-2\hat{k}\): \[ \hat{n} = \frac{-2\hat{k}}{|-2|} = -\hat{k} \] ### Step 4: Calculate the dot product \(\vec{W} \cdot \hat{n}\) Now, we compute the dot product \(\vec{W} \cdot \hat{n}\): \[ \vec{W} \cdot \hat{n} = (3\hat{i} + 5\hat{j} + 3\hat{k}) \cdot (-\hat{k}) = 3(0) + 5(0) + 3(-1) = -3 \] ### Step 5: Find the modulus of the dot product Finally, we find the modulus: \[ |\vec{W} \cdot \hat{n}| = |-3| = 3 \] ### Final Answer Thus, the value of \(|\vec{W} \cdot \hat{n}|\) is **3**. ---
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 27

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 29

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

Let vecu= hati+hatj, vecv = hati -hatj and vecw = hati+2hatj+3hatk . If hatn is a unit vector such that vecu.hatn =0 and vecv.hatn=0 then find the value of |vecw.hatn|

Let vecu=hai+hatj,vecv=hati-hatj and vecw=hati+2hatj+3hatk . If hatn isa unit vector such that vecu.hatn=0 and vecv.hatn=0, |vecw.hatn| is equal to (A) 0 (B) 1 (C) 2 (D) 3

The vector vec(A)=6hati+9hatj-3hatkand vecB=2hati+3hatj-hatk are

Let vecu= hati + hatj , vecv = hati -hatja and hati -hatj and vecw =hati + 2hatj + 3 hatk If hatn isa unit vector such that vecu .hatn=0 and vecn .hatn =0 , " then " |vecw.hatn| is equal to

Let vec(a)=2hati-hatj+hatk,vec(b)=hati+2hatj-hatk and vec( c )=hati+hatj-2hatk be three vectors. A vector in the plane of vec(b) and vec( c ) whose projection on vec(a) is of magnitude sqrt(2//3) is

If vec(OA)=2hati-hatj+hatk, vec(OB)=hati-3hatj-5hatk and vec(OC)=3hati-3hatj-3hatk then show that CB is perpendicular to AC.

Let vec a=4hati+5hatj-hatk, vecb = hati -4hatj+5hatk and vec c=3hati+hatj-hatk . Find a vector vec dwhich is perpendicular to both vec c and vec b and vec d.vec a=21

Let veca=2hati+3hatj+4hatk, vecb=hati-2hatj+jhatk and vecc=hati+hatj-hatk. If vecr xx veca =vecb and vecr.vec c=3, then the value of |vecr| is equal to

Let veca=hati+hatj+hatk,vecb=hati+4hatj-hatk and vec c =hati+hatj+2hatk . If vecS be a unit vector, then the magnitude of the vector (veca.vecS)(vecbxxvecc)+(vecb.vecS)(veccxxveca)+(vecc.vecS)(vecaxxvecb) is equal to

NTA MOCK TESTS-NTA JEE MOCK TEST 28-MATHEMATICS
  1. The minimum value of |3z-3|+|2z-4|equal to

    Text Solution

    |

  2. If {:(lim),(xrarr0):}(1+px+qx^2)^("cosec"x)=e^5 ,then

    Text Solution

    |

  3. If inte^(sintheta)(sintheta+sec^2theta)"d"theta is equal to f(theta)+...

    Text Solution

    |

  4. A curve passing through the point (1,2) and satisfying the condition t...

    Text Solution

    |

  5. The coefficient of x^8 in the expasnsion of (1+(x^2)/(2!)+(x^4)/(4!)+(...

    Text Solution

    |

  6. Let P and Q be two points on the curves x^2+y^2=2 and (x^2)/8+y^2/4 =1...

    Text Solution

    |

  7. Let orthocentre of DeltaABC is (4,6) . If A=(4,7) and B=(-2,4) , then ...

    Text Solution

    |

  8. The area bounded by the curve y=|cos^-1(sinx)|+|pi/2-cos^-1(cosx)| and...

    Text Solution

    |

  9. Let o+and ox are two mathematical operators . If po+(q oxr) is equiva...

    Text Solution

    |

  10. The point of intersection of the plane 3x-5y+2z=6 with the straight li...

    Text Solution

    |

  11. If Dr=|{:(r,15,8),(r^2,35,9),(r^3,25,10):}|, then the value of root(5)...

    Text Solution

    |

  12. Let I1=int0^1e^(x^2)dx and I2=int0^(12)2^(x^2)e^(x^2)dx then the valu...

    Text Solution

    |

  13. A pair of tangents are drawn from a point P to the circle x^2+y^2=1. I...

    Text Solution

    |

  14. Tangents to the parabola y^2=4ax at P(at1^2,2at1)and Q(at2^2,2at2) mee...

    Text Solution

    |

  15. The value of int(-1)^1cot^-1((x+x^3+x^5)/(x^4+x^2+1)) dx is equal to

    Text Solution

    |

  16. Let vec(U)=hati,hatj,vecV=hati-hatjand vec(W)=3hati+5hatj+3hatk. If h...

    Text Solution

    |

  17. Consider the function f(x)=max{|sinx|,|cosx|},AA"x"in[0,3pi]. if lamda...

    Text Solution

    |

  18. If the roots of the equation 10x^(3)-cx^(2)=54x-27=0 are in harmonic p...

    Text Solution

    |

  19. If the normal to the ellipse x^2/25+y^2/1=1 is at a distance p from th...

    Text Solution

    |

  20. If A=[{:(2,3),(-1,-2):}] and B=sum(r=1)^(10)A^r , then the value of de...

    Text Solution

    |