Home
Class 12
MATHS
Consider the function f(x)=max{|sinx|,|c...

Consider the function `f(x)=max{|sinx|,|cosx|},AA"x"in[0,3pi].` if `lamda` is the number of points at which f(x) is non - differentiable , then value of `(lamda^3)/5` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( f(x) = \max\{|\sin x|, |\cos x|\} \) over the interval \( [0, 3\pi] \) and determine the number of points where this function is non-differentiable. ### Step 1: Identify the points where \( |\sin x| \) and \( |\cos x| \) intersect The function \( f(x) \) will change its expression at points where \( |\sin x| = |\cos x| \). This occurs when: \[ \sin x = \cos x \quad \text{or} \quad \sin x = -\cos x \] These equations can be solved as follows: 1. For \( \sin x = \cos x \): \[ \tan x = 1 \implies x = \frac{\pi}{4} + n\pi, \quad n \in \mathbb{Z} \] 2. For \( \sin x = -\cos x \): \[ \tan x = -1 \implies x = \frac{3\pi}{4} + n\pi, \quad n \in \mathbb{Z} \] ### Step 2: Find the specific points in the interval \( [0, 3\pi] \) Now we will find the specific points in the interval \( [0, 3\pi] \): 1. From \( \tan x = 1 \): - \( x = \frac{\pi}{4} \) - \( x = \frac{5\pi}{4} \) - \( x = \frac{9\pi}{4} \) 2. From \( \tan x = -1 \): - \( x = \frac{3\pi}{4} \) - \( x = \frac{7\pi}{4} \) - \( x = \frac{11\pi}{4} \) ### Step 3: List all intersection points The intersection points in the interval \( [0, 3\pi] \) are: - \( \frac{\pi}{4} \) - \( \frac{3\pi}{4} \) - \( \frac{5\pi}{4} \) - \( \frac{7\pi}{4} \) - \( \frac{9\pi}{4} \) - \( \frac{11\pi}{4} \) ### Step 4: Count the non-differentiable points The function \( f(x) \) is non-differentiable at each of these points because the maximum function can switch from one piece to another at these intersections. Thus, we have a total of 6 non-differentiable points. ### Step 5: Calculate \( \lambda^3 / 5 \) Let \( \lambda \) be the number of non-differentiable points: \[ \lambda = 6 \] Now we calculate: \[ \frac{\lambda^3}{5} = \frac{6^3}{5} = \frac{216}{5} = 43.2 \] ### Final Answer Thus, the value of \( \frac{\lambda^3}{5} \) is \( \boxed{43.2} \).
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 27

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 29

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

For the function f(x)=sinx+2cosx,AA"x"in[0,2pi] we obtain

If f(x)=max{tanx, sin x, cos x} where x in [-(pi)/(2),(3pi)/(2)) then the number of points, where f(x) is non -differentiable, is

Consider the function f(x)=min{|x^(2)-9|,|x^(2)-1|} , then the number of points where f(x) is non - differentiable is/are

Consider the function f(x)=min{|x^(2)-4|,|x^(2)-1|} , then the number of points where f(x) is non - differentiable is/are

Let f:[0,(pi)/(2)]rarr R a function defined by f(x)=max{sin x,cos x,(3)/(4)} ,then number of points where f(x) is non-differentiable is

Let f: [0,(pi)/(2)]rarr R be a function defined by f(x)=max{sin x, cos x,(3)/(4)} ,then number of points where f(x) in non-differentiable is

Consider the function: f(x)=max.{1,|x-1|, min {4,|3x-1|}}AA x in R. Then find the value of f(3).

If f(x)=|x^(2)-3x+2|+|sinx| then number of points where f(x) is not differentiable in [-pi,pi] is

Find the number of points where the function f(x)=max|tanx|,cos|x|) is non-differentiable in the interval (-pi,pi) .

Let f(x)=max{4,1+x^(2),x^(2)-1}AA x in R Total number of points,where f(x) is non- differentiable,is equal to

NTA MOCK TESTS-NTA JEE MOCK TEST 28-MATHEMATICS
  1. The minimum value of |3z-3|+|2z-4|equal to

    Text Solution

    |

  2. If {:(lim),(xrarr0):}(1+px+qx^2)^("cosec"x)=e^5 ,then

    Text Solution

    |

  3. If inte^(sintheta)(sintheta+sec^2theta)"d"theta is equal to f(theta)+...

    Text Solution

    |

  4. A curve passing through the point (1,2) and satisfying the condition t...

    Text Solution

    |

  5. The coefficient of x^8 in the expasnsion of (1+(x^2)/(2!)+(x^4)/(4!)+(...

    Text Solution

    |

  6. Let P and Q be two points on the curves x^2+y^2=2 and (x^2)/8+y^2/4 =1...

    Text Solution

    |

  7. Let orthocentre of DeltaABC is (4,6) . If A=(4,7) and B=(-2,4) , then ...

    Text Solution

    |

  8. The area bounded by the curve y=|cos^-1(sinx)|+|pi/2-cos^-1(cosx)| and...

    Text Solution

    |

  9. Let o+and ox are two mathematical operators . If po+(q oxr) is equiva...

    Text Solution

    |

  10. The point of intersection of the plane 3x-5y+2z=6 with the straight li...

    Text Solution

    |

  11. If Dr=|{:(r,15,8),(r^2,35,9),(r^3,25,10):}|, then the value of root(5)...

    Text Solution

    |

  12. Let I1=int0^1e^(x^2)dx and I2=int0^(12)2^(x^2)e^(x^2)dx then the valu...

    Text Solution

    |

  13. A pair of tangents are drawn from a point P to the circle x^2+y^2=1. I...

    Text Solution

    |

  14. Tangents to the parabola y^2=4ax at P(at1^2,2at1)and Q(at2^2,2at2) mee...

    Text Solution

    |

  15. The value of int(-1)^1cot^-1((x+x^3+x^5)/(x^4+x^2+1)) dx is equal to

    Text Solution

    |

  16. Let vec(U)=hati,hatj,vecV=hati-hatjand vec(W)=3hati+5hatj+3hatk. If h...

    Text Solution

    |

  17. Consider the function f(x)=max{|sinx|,|cosx|},AA"x"in[0,3pi]. if lamda...

    Text Solution

    |

  18. If the roots of the equation 10x^(3)-cx^(2)=54x-27=0 are in harmonic p...

    Text Solution

    |

  19. If the normal to the ellipse x^2/25+y^2/1=1 is at a distance p from th...

    Text Solution

    |

  20. If A=[{:(2,3),(-1,-2):}] and B=sum(r=1)^(10)A^r , then the value of de...

    Text Solution

    |