Home
Class 12
MATHS
If A=[{:(2,3),(-1,-2):}] and B=sum(r=1)^...

If `A=[{:(2,3),(-1,-2):}] and B=sum_(r=1)^(10)A^r` , then the value of det (B)is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the determinant of the matrix \( B \), which is defined as \( B = \sum_{r=1}^{10} A^r \) where \( A = \begin{pmatrix} 2 & 3 \\ -1 & -2 \end{pmatrix} \). ### Step 1: Calculate \( A^2 \) We start by calculating \( A^2 \): \[ A^2 = A \cdot A = \begin{pmatrix} 2 & 3 \\ -1 & -2 \end{pmatrix} \cdot \begin{pmatrix} 2 & 3 \\ -1 & -2 \end{pmatrix} \] Calculating the elements: - First row, first column: \( 2 \cdot 2 + 3 \cdot (-1) = 4 - 3 = 1 \) - First row, second column: \( 2 \cdot 3 + 3 \cdot (-2) = 6 - 6 = 0 \) - Second row, first column: \( -1 \cdot 2 + (-2) \cdot (-1) = -2 + 2 = 0 \) - Second row, second column: \( -1 \cdot 3 + (-2) \cdot (-2) = -3 + 4 = 1 \) Thus, we have: \[ A^2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I \] **Hint for Step 1:** Use matrix multiplication rules carefully to compute each element of the resulting matrix. ### Step 2: Identify the pattern for higher powers of \( A \) Since \( A^2 = I \), we can deduce: - \( A^3 = A^2 \cdot A = I \cdot A = A \) - \( A^4 = A^2 \cdot A^2 = I \cdot I = I \) - \( A^5 = A^4 \cdot A = I \cdot A = A \) - Continuing this pattern, we find: - \( A^{2n} = I \) for even \( n \) - \( A^{2n+1} = A \) for odd \( n \) ### Step 3: Calculate \( B \) Now we can calculate \( B \): \[ B = A + A^2 + A^3 + A^4 + A^5 + A^6 + A^7 + A^8 + A^9 + A^{10} \] Substituting the powers: - Odd powers (1, 3, 5, 7, 9): \( 5A \) - Even powers (2, 4, 6, 8, 10): \( 5I \) Thus, \[ B = 5A + 5I = 5(A + I) \] ### Step 4: Calculate \( A + I \) Now we need to compute \( A + I \): \[ A + I = \begin{pmatrix} 2 & 3 \\ -1 & -2 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 3 \\ -1 & -1 \end{pmatrix} \] ### Step 5: Calculate the determinant of \( B \) Now we can find the determinant of \( B \): \[ B = 5 \begin{pmatrix} 3 & 3 \\ -1 & -1 \end{pmatrix} \] The determinant of a scalar multiple of a matrix is the scalar raised to the power of the dimension of the matrix times the determinant of the matrix: \[ \det(B) = 5^2 \cdot \det\begin{pmatrix} 3 & 3 \\ -1 & -1 \end{pmatrix} \] Calculating the determinant: \[ \det\begin{pmatrix} 3 & 3 \\ -1 & -1 \end{pmatrix} = (3 \cdot -1) - (3 \cdot -1) = -3 + 3 = 0 \] Thus, \[ \det(B) = 25 \cdot 0 = 0 \] ### Final Answer The value of \( \det(B) \) is \( 0 \). ---
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 27

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 29

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If f(n)=sum_(r=1)^(n) r^(4) , then the value of sum_(r=1)^(n) r(n-r)^(3) is equal to

If A=[(1,0),(0,1)] B=sum_(r=1)^2021A^r then value of abs(B) is

If sum_(r=1)^(10)r(r-1)10C_(r)=k.2^(9), then k is equal to- -1

If A = [{:(2,3),(0,-1):}] , then the value of det (A^(4)) | det ( A^(10) - Adj( 2A))^(10)) is equal to "_______________" .

If A,B and C are n xx n matrices and det(A)=2,det(B)=3 and det(C)=5 then the value of the det (A^(2)BC^(-1)) is equal to

Let A and B are two square matrices of order 3 such that det. (A)=3 and det. (B)=2 , then the value of det. (("adj. "(B^(-1) A^(-1)))^(-1)) is equal to _______ .

Find sum_(r=1)^(10) (r+2)(3r+1).

The value of sum_(r=1)^(10)r.r! is

If underset(r=1)overset(10)sum r! (r^(3)+6r^(2)+2r+5)=alpha (11!) , then the value of alpha is equal to .......

If sum_(r=1)^(n) r(sqrt(10))/(3)sum_(r=1)^(n)r^(2),sum_(r=1)^(n) r^(3) are in G.P., then the value of n, is

NTA MOCK TESTS-NTA JEE MOCK TEST 28-MATHEMATICS
  1. The minimum value of |3z-3|+|2z-4|equal to

    Text Solution

    |

  2. If {:(lim),(xrarr0):}(1+px+qx^2)^("cosec"x)=e^5 ,then

    Text Solution

    |

  3. If inte^(sintheta)(sintheta+sec^2theta)"d"theta is equal to f(theta)+...

    Text Solution

    |

  4. A curve passing through the point (1,2) and satisfying the condition t...

    Text Solution

    |

  5. The coefficient of x^8 in the expasnsion of (1+(x^2)/(2!)+(x^4)/(4!)+(...

    Text Solution

    |

  6. Let P and Q be two points on the curves x^2+y^2=2 and (x^2)/8+y^2/4 =1...

    Text Solution

    |

  7. Let orthocentre of DeltaABC is (4,6) . If A=(4,7) and B=(-2,4) , then ...

    Text Solution

    |

  8. The area bounded by the curve y=|cos^-1(sinx)|+|pi/2-cos^-1(cosx)| and...

    Text Solution

    |

  9. Let o+and ox are two mathematical operators . If po+(q oxr) is equiva...

    Text Solution

    |

  10. The point of intersection of the plane 3x-5y+2z=6 with the straight li...

    Text Solution

    |

  11. If Dr=|{:(r,15,8),(r^2,35,9),(r^3,25,10):}|, then the value of root(5)...

    Text Solution

    |

  12. Let I1=int0^1e^(x^2)dx and I2=int0^(12)2^(x^2)e^(x^2)dx then the valu...

    Text Solution

    |

  13. A pair of tangents are drawn from a point P to the circle x^2+y^2=1. I...

    Text Solution

    |

  14. Tangents to the parabola y^2=4ax at P(at1^2,2at1)and Q(at2^2,2at2) mee...

    Text Solution

    |

  15. The value of int(-1)^1cot^-1((x+x^3+x^5)/(x^4+x^2+1)) dx is equal to

    Text Solution

    |

  16. Let vec(U)=hati,hatj,vecV=hati-hatjand vec(W)=3hati+5hatj+3hatk. If h...

    Text Solution

    |

  17. Consider the function f(x)=max{|sinx|,|cosx|},AA"x"in[0,3pi]. if lamda...

    Text Solution

    |

  18. If the roots of the equation 10x^(3)-cx^(2)=54x-27=0 are in harmonic p...

    Text Solution

    |

  19. If the normal to the ellipse x^2/25+y^2/1=1 is at a distance p from th...

    Text Solution

    |

  20. If A=[{:(2,3),(-1,-2):}] and B=sum(r=1)^(10)A^r , then the value of de...

    Text Solution

    |