Home
Class 12
MATHS
If |(x+y,y+z,z+x),(y+z, z+x,x+y),(z+x,x+...

If `|(x+y,y+z,z+x),(y+z, z+x,x+y),(z+x,x+y,y+z)|`=k`|(x,z,y),(y,x,z),(z,y,x)|`, then k is equal to

A

`-2`

B

2

C

`-3`

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the determinants and find the value of \( k \) such that: \[ |(x+y, y+z, z+x), (y+z, z+x, x+y), (z+x, x+y, y+z)| = k |(x, z, y), (y, x, z), (z, y, x)| \] Let's denote the first determinant as \( D_1 \) and the second determinant as \( D_2 \). ### Step 1: Evaluate \( D_1 \) We have: \[ D_1 = \begin{vmatrix} x+y & y+z & z+x \\ y+z & z+x & x+y \\ z+x & x+y & y+z \end{vmatrix} \] To simplify \( D_1 \), we can use the property of determinants that allows us to add or subtract multiples of rows or columns. 1. **Add all columns**: \[ C_1 \rightarrow C_1 + C_2 + C_3 \] This gives us: \[ D_1 = \begin{vmatrix} 2(x+y+z) & y+z & z+x \\ 2(x+y+z) & z+x & x+y \\ 2(x+y+z) & x+y & y+z \end{vmatrix} \] 2. **Factor out \( 2(x+y+z) \)** from the first column: \[ D_1 = 2(x+y+z) \begin{vmatrix} 1 & y+z & z+x \\ 1 & z+x & x+y \\ 1 & x+y & y+z \end{vmatrix} \] 3. **Subtract the first row from the second and third rows**: \[ R_2 \rightarrow R_2 - R_1, \quad R_3 \rightarrow R_3 - R_1 \] This gives us: \[ D_1 = 2(x+y+z) \begin{vmatrix} 1 & y+z & z+x \\ 0 & (z+x)-(y+z) & (x+y)-(y+z) \\ 0 & (x+y)-(y+z) & (y+z)-(z+x) \end{vmatrix} \] 4. **Simplifying further**: \[ D_1 = 2(x+y+z) \begin{vmatrix} 1 & y+z & z+x \\ 0 & x-y & x-z \\ 0 & y-z & y-x \end{vmatrix} \] 5. **The determinant of the \( 2 \times 2 \) matrix** can be computed: \[ D_1 = 2(x+y+z) \cdot (x-y)(y-z)(z-x) \] ### Step 2: Evaluate \( D_2 \) Now, we evaluate \( D_2 \): \[ D_2 = \begin{vmatrix} x & z & y \\ y & x & z \\ z & y & x \end{vmatrix} \] This determinant can be computed directly or using properties of determinants. 1. **Using the property of determinants**: \[ D_2 = (x-y)(y-z)(z-x) \] ### Step 3: Relate \( D_1 \) and \( D_2 \) Now we have: \[ D_1 = 2(x+y+z)(x-y)(y-z)(z-x) \] \[ D_2 = (x-y)(y-z)(z-x) \] We can set up the equation: \[ 2(x+y+z)(x-y)(y-z)(z-x) = k(x-y)(y-z)(z-x) \] ### Step 4: Solve for \( k \) Dividing both sides by \( (x-y)(y-z)(z-x) \) (assuming \( x, y, z \) are distinct): \[ 2(x+y+z) = k \] Thus, we find: \[ k = 2(x+y+z) \] ### Final Answer The value of \( k \) is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 30

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 32

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

|(0,xyz,x-z),(y-x,0,y-z),(z-x,z-y,0)| is equal to……………

Prove: |(y+z, z, y),( z, z+x,x),( y, x,x+y)|=4\ x y z

If |[y+z,x,y],[z+x,z,x],[x+y,y,z]|=k(x+y+z)(x-z)^2 then k is equal to

|[y+z, x, y],[z+x, z, x],[x+y, y, z]|=...

The value of |(x +y,y+z,z+x),(x,y,z),(x -y,y-z,z-x)| is euqal to

prove that: |(y+z,z,y),(z,z+x,x),(y,x,x+y)|=4xyz

A(x, y, z)=" min. "(x+y, y+z, z+x) B(x, y, z)="max "(x-y, y-z, z-x) C(x, y, z)=" max"(A(x, y, z), B(x, y, z)) D(x, y, z)=" min "(A(x, y, z), B(x, y, z)) The value of C(1, 2, 3) is :

A(x, y, z)=" min. "(x+y, y+z, z+x) B(x, y, z)="max "(x-y, y-z, z-x) C(x, y, z)=" max"(A(x, y, z), B(x, y, z)) D(x, y, z)=" min "(A(x, y, z), B(x, y, z)) What is the value of A(2, 3, 4)+B(2, 3, 4) ?

NTA MOCK TESTS-NTA JEE MOCK TEST 31-MATHEMATICS
  1. The area bounded by the curve y=x^(2)(x-1)^(2) with the x - axis is k ...

    Text Solution

    |

  2. Let O=(0, 0), A=(3, 0), B=(0, -1) and C=(3, 2), then the minimum value...

    Text Solution

    |

  3. If f(x)={{:(2x^(2)+3,,,xge3),(ax^(2)+bx+1,,,xle3):} is differentiable ...

    Text Solution

    |

  4. The sum of the series 2/(1.2)+5/(2.3)2^1+10/(3.4)2^2+17/(4.5)2^3+.... ...

    Text Solution

    |

  5. The number of five digit numbers formed with the digits 0, 1, 2, 3, 4 ...

    Text Solution

    |

  6. Let vecA be a vector parallel to the line of intersection of the plane...

    Text Solution

    |

  7. If y=cos x cos 2x cos 4x cos 8x, then (dy)/(dx)" at "x=(pi)/(2) is

    Text Solution

    |

  8. Let points A(1), A(2) and A(3) lie on the parabola y^(2)=8x. If triang...

    Text Solution

    |

  9. Let I=int(0)^(24pi){sinx}dx then the value of 2I is equal to (where, {...

    Text Solution

    |

  10. The line 2x+y=3 cuts the ellipse 4x^(2)+y^(2)=5 at points P and Q. If ...

    Text Solution

    |

  11. The shortest distance between the lines 2x + y + z - 1 = 0 = 3x + y + ...

    Text Solution

    |

  12. If |(x+y,y+z,z+x),(y+z, z+x,x+y),(z+x,x+y,y+z)|=k|(x,z,y),(y,x,z),(z,y...

    Text Solution

    |

  13. Two circles of radii r1 and r2, are both touching the coordinate axes...

    Text Solution

    |

  14. A is a square matrix and I is an identity matrix of the same order. If...

    Text Solution

    |

  15. The coefficient of x^(6) in the expansion of (1+x+x^(2))^(6) is

    Text Solution

    |

  16. Let inte^(x).x^(2)dx=f(x)e^(x)+C (where, C is the constant of integrat...

    Text Solution

    |

  17. The sum of the roots of the equation |sqrt3cos x-sinx|=2" in "[0, 4pi]...

    Text Solution

    |

  18. If f(x)+2f(1-x)=6x(AA x in R), then the vlaue of (3)/(4)((f(8))/(f'(1)...

    Text Solution

    |

  19. 4 different balls of green colour and 4 different balls of red colour ...

    Text Solution

    |

  20. The number of point(s) on the curve y^(3)=12y-3x^(2) where a tangents ...

    Text Solution

    |