Home
Class 12
MATHS
If the garph of the function f(x)=ax^(3)...

If the garph of the function `f(x)=ax^(3)+x^(2)+bx+c` is symmetric about the line x = 2, then the value of `a+b` is equal to

A

10

B

`-4`

C

16

D

`-10`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( a \) and \( b \) in the function \( f(x) = ax^3 + x^2 + bx + c \) such that the graph of the function is symmetric about the line \( x = 2 \). ### Step 1: Understanding Symmetry A function is symmetric about a vertical line \( x = k \) if \( f(k - x) = f(k + x) \). In this case, \( k = 2 \). Therefore, we need to check if \( f(2 - x) = f(2 + x) \). ### Step 2: Calculate \( f(2 - x) \) Substituting \( 2 - x \) into the function: \[ f(2 - x) = a(2 - x)^3 + (2 - x)^2 + b(2 - x) + c \] Expanding this: \[ = a(8 - 12x + 6x^2 - x^3) + (4 - 4x + x^2) + b(2 - x) + c \] \[ = 8a - 12ax + 6ax^2 - ax^3 + 4 - 4x + x^2 + 2b - bx + c \] Combining like terms: \[ = (-a)x^3 + (6a + 1)x^2 + (-12a - 4 - b)x + (8a + 4 + 2b + c) \] ### Step 3: Calculate \( f(2 + x) \) Now substituting \( 2 + x \) into the function: \[ f(2 + x) = a(2 + x)^3 + (2 + x)^2 + b(2 + x) + c \] Expanding this: \[ = a(8 + 12x + 6x^2 + x^3) + (4 + 4x + x^2) + b(2 + x) + c \] \[ = 8a + 12ax + 6ax^2 + ax^3 + 4 + 4x + x^2 + 2b + bx + c \] Combining like terms: \[ = ax^3 + (6a + 1)x^2 + (12a + 4 + b)x + (8a + 4 + 2b + c) \] ### Step 4: Set the Two Expressions Equal Since \( f(2 - x) = f(2 + x) \), we equate the coefficients from both expanded forms: 1. Coefficient of \( x^3 \): \[ -a = a \implies 2a = 0 \implies a = 0 \] 2. Coefficient of \( x^2 \): \[ 6a + 1 = 6(0) + 1 = 1 \quad \text{(this is always true)} \] 3. Coefficient of \( x \): \[ -12a - 4 - b = 12a + 4 + b \] Substituting \( a = 0 \): \[ -4 - b = 4 + b \implies -4 - 4 = 2b \implies -8 = 2b \implies b = -4 \] ### Step 5: Calculate \( a + b \) Now we have: \[ a = 0, \quad b = -4 \] Thus, \[ a + b = 0 - 4 = -4 \] ### Final Answer The value of \( a + b \) is \( -4 \).
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • NTA JEE MOCK TEST 36

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 38

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If the graph of the function y=f(x) is symmetrical about the line x=2, then

If the graph of y=ax^(3)+bx^(2)+cx+d is symmetric about the line x=K then the value of a+K is (y is not a constant function)

Knowledge Check

  • The graph of the function y=f(x) is symmetrical about the line x=2 , then :

    A
    `f(x+2)=f(x-2)`
    B
    `f(2+x)=f(2-x)`
    C
    `f(x)=f(-x)`
    D
    none of these
  • The graph of the function Y=f(x) is symmetrical about the line x=2, then :

    A
    f(x+2)=f(x-2)
    B
    f(2+x)=f(2-x)
    C
    f(x)=f(-x)
    D
    none of these
  • If the graph of the function f(x)=(a^(x)-1)/(x^(n)(a^(x)+1)) is symmetric about y - axis, then n is equal to :

    A
    `a. -(1)/(3)`
    B
    b. `(1)/(4)`
    C
    c. `2//3`
    D
    d. 2
  • Similar Questions

    Explore conceptually related problems

    If the function f(x)=(3x^(2)ax+a+3)/(x^(2)+x-2) is continuous at x=-2, then the value of f(-2) is

    If the graph of the function f(x)=(a^(x)-1)/(x^(n)(a^(x)+1)) is symmetrical about the y-a xi s,then n equals 2 (b) (2)/(3)(c)(1)/(4) (d) (1)/(3)

    If the graph of the function f(x)=(a^(x)-1)/(x^(n)(a^(x)+1)) is symmetric about y -axis then n is equal to

    If the graph of a function f(x is symmetrical about the line x = a, then

    The function f(x)=x^(3)+ax^(2)+bx+c,a^(2)le3b has