Home
Class 12
MATHS
If y=2 +sqrt(sinx+2+sqrt(sinx+2+sqrt(sin...

If `y=2 +sqrt(sinx+2+sqrt(sinx+2+sqrt(sinx+…oo)))` then the value of `(dy)/(dx)` at x = 0 is

A

0

B

2

C

`(1)/(2)`

D

`(1)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the equation given: \[ y = 2 + \sqrt{\sin x + 2 + \sqrt{\sin x + 2 + \sqrt{\sin x + \ldots}}} \] ### Step 1: Setting up the equation We can express the infinite nested square root in terms of \(y\): \[ y = 2 + \sqrt{\sin x + y} \] ### Step 2: Rearranging the equation Subtract 2 from both sides: \[ y - 2 = \sqrt{\sin x + y} \] ### Step 3: Squaring both sides Square both sides to eliminate the square root: \[ (y - 2)^2 = \sin x + y \] ### Step 4: Expanding the left side Expanding the left side gives: \[ y^2 - 4y + 4 = \sin x + y \] ### Step 5: Rearranging the equation Rearranging this equation leads to: \[ y^2 - 5y + 4 - \sin x = 0 \] ### Step 6: Differentiating both sides Now, we differentiate both sides with respect to \(x\): \[ \frac{d}{dx}(y^2 - 5y + 4 - \sin x) = 0 \] Using the chain rule, we get: \[ 2y \frac{dy}{dx} - 5 \frac{dy}{dx} - \cos x = 0 \] ### Step 7: Factoring out \(\frac{dy}{dx}\) Factoring out \(\frac{dy}{dx}\): \[ (2y - 5) \frac{dy}{dx} = \cos x \] ### Step 8: Solving for \(\frac{dy}{dx}\) Now, we can solve for \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = \frac{\cos x}{2y - 5} \] ### Step 9: Finding \(y\) at \(x = 0\) To find \(\frac{dy}{dx}\) at \(x = 0\), we need to find the value of \(y\) when \(x = 0\): \[ y^2 - 5y + 4 - \sin(0) = 0 \] This simplifies to: \[ y^2 - 5y + 4 = 0 \] ### Step 10: Solving the quadratic equation Using the quadratic formula: \[ y = \frac{5 \pm \sqrt{(-5)^2 - 4 \cdot 1 \cdot 4}}{2 \cdot 1} = \frac{5 \pm \sqrt{25 - 16}}{2} = \frac{5 \pm 3}{2} \] This gives us: \[ y = 4 \quad \text{or} \quad y = 1 \] ### Step 11: Choosing the appropriate value for \(y\) Since the expression for \(y\) involves square roots and must be positive, we take: \[ y = 4 \] ### Step 12: Substituting \(y\) back into the derivative Now substituting \(y = 4\) back into the derivative: \[ \frac{dy}{dx} = \frac{\cos(0)}{2(4) - 5} = \frac{1}{8 - 5} = \frac{1}{3} \] ### Final Answer Thus, the value of \(\frac{dy}{dx}\) at \(x = 0\) is: \[ \frac{1}{3} \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 36

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 38

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If y = tan^(-1) sqrt((1-sinx)/(1+sinx)) , then the value of (dy)/(dx) "at x = (pi)/(6) is

If y=sqrt(sinx+sqrt(sinx+sqrt(sinx+ . . .oo))) , then (dy)/(dx) is equal to

If y=sqrt(sinx+sqrt(sinx+sqrt(sinx+ tooo))),p rov et h a t(dy)/(dx)=(cosx)/(2y-1)

int(1)/(sinx sqrt(sinx cos x))dx=

If y=sqrt(sinx+sqrt(sinx+sqrt(sinx..." to "oo)))," then "(2y-1)y_(1)=

y=sqrt(sin +cos x+sqrt(sinx+ cos x +sqrt(sin x +cos x +....oo))) " then find " dy/dx

If coty=(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))," then "(dy)/(dx)=

If y=sqrt(cos x+sqrt(cos x +sqrt(cos x+....oo))) " then prove that " dy/dx = sinx /(1-2y).

If y= sqrt(1+sinx) then find dy/dx

NTA MOCK TESTS-NTA JEE MOCK TEST 37-MATHEMATICS
  1. If the garph of the function f(x)=ax^(3)+x^(2)+bx+c is symmetric about...

    Text Solution

    |

  2. If y=2 +sqrt(sinx+2+sqrt(sinx+2+sqrt(sinx+…oo))) then the value of (d...

    Text Solution

    |

  3. From a point P, two tangents PA and PB are drawn to the hyperbola (x^(...

    Text Solution

    |

  4. Let f(x)=x^(3)+x^(2)+x+1, then the area (in sq. units) bounded by y=f(...

    Text Solution

    |

  5. The variance of the first 20 positive integral multiples of 4 is equal...

    Text Solution

    |

  6. Eleven objects A, B, C, D, E, F, alpha, alpha, alpha, beta and beta ar...

    Text Solution

    |

  7. If veca=hati+hatj+2htk, bec=hati+2hatj+2hatk and |vecc|=1, then the m...

    Text Solution

    |

  8. If the differential equation 3x^((1)/(3))dy+x^((-2)/(3))ydx=3xdx is sa...

    Text Solution

    |

  9. Let z and w be non - zero complex numbers such that zw=|z^(2)| and |z-...

    Text Solution

    |

  10. The sum of the roots of the equation 2^((33x-2))+2^((11x+2))=2^((22x+1...

    Text Solution

    |

  11. For -(pi)/(2)le x le (pi)/(2), the number of point of intersection of ...

    Text Solution

    |

  12. A balloon moving in a straight line passes vertically above two points...

    Text Solution

    |

  13. The value of lim(xrarr0^(-))(4^(2+(3)/(x))+5(2^((1)/(x))))/(2^((1+(6)/...

    Text Solution

    |

  14. If 2^(2020)+2021 is divided by 9, then the remainder obtained is

    Text Solution

    |

  15. The value of the integral intx^((1)/(3))(1-sqrtx)^(3)dx is equal to (w...

    Text Solution

    |

  16. If y=f(x) satisfies has conditions of Rolle's theorem in [2, 6], then ...

    Text Solution

    |

  17. Let D is a point on the line l(1):x+y=2=0 and S(3, 3) is a fixed point...

    Text Solution

    |

  18. If a+b+c =0 and a^(2)+b^(2)+c^(2)-ab-bc -ca ne 0, AA a, b, c in R then...

    Text Solution

    |

  19. If ax+13y+bz+c=0 is a plane through the line intersection of 2x+3y-z+1...

    Text Solution

    |

  20. Let the pointsA:(0, a), B:(-2, 0) and C:(1, 1) form an obtuse angled t...

    Text Solution

    |