Home
Class 12
MATHS
If veca=hati+hatj+2htk, bec=hati+2hatj+2...

If `veca=hati+hatj+2htk, bec=hati+2hatj+2hatk and |vecc|=1,` then the maximum value of `[veca xx vecb vecb xx vecc vecc xx veca]` is equal to

A

2

B

3

C

4

D

5

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the maximum value of the expression \([ \vec{a} \times \vec{b}, \vec{b} \times \vec{c}, \vec{c} \times \vec{a} ]\), where \(\vec{a} = \hat{i} + \hat{j} + 2\hat{k}\), \(\vec{b} = \hat{i} + 2\hat{j} + 2\hat{k}\), and \(|\vec{c}| = 1\). ### Step 1: Calculate \(\vec{a} \times \vec{b}\) We will first compute the cross product \(\vec{a} \times \vec{b}\): \[ \vec{a} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}, \quad \vec{b} = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} \] Using the determinant method for the cross product: \[ \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 2 \\ 1 & 2 & 2 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i} \begin{vmatrix} 1 & 2 \\ 2 & 2 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & 2 \\ 1 & 2 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & 1 \\ 1 & 2 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. \(\begin{vmatrix} 1 & 2 \\ 2 & 2 \end{vmatrix} = (1)(2) - (2)(2) = 2 - 4 = -2\) 2. \(\begin{vmatrix} 1 & 2 \\ 1 & 2 \end{vmatrix} = (1)(2) - (2)(1) = 2 - 2 = 0\) 3. \(\begin{vmatrix} 1 & 1 \\ 1 & 2 \end{vmatrix} = (1)(2) - (1)(1) = 2 - 1 = 1\) Putting it all together: \[ \vec{a} \times \vec{b} = -2\hat{i} - 0\hat{j} + 1\hat{k} = -2\hat{i} + \hat{k} \] ### Step 2: Calculate \(\vec{b} \times \vec{c}\) Next, we need to compute \(\vec{b} \times \vec{c}\). Since \(|\vec{c}| = 1\), we can express \(\vec{c}\) in terms of its components as \(\vec{c} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}\) where \(x^2 + y^2 + z^2 = 1\). Using the same determinant method: \[ \vec{b} \times \vec{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 2 \\ x & y & z \end{vmatrix} \] Calculating this determinant yields: \[ = \hat{i} \begin{vmatrix} 2 & 2 \\ y & z \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & 2 \\ x & z \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & 2 \\ x & y \end{vmatrix} \] Calculating the 2x2 determinants: 1. \(\begin{vmatrix} 2 & 2 \\ y & z \end{vmatrix} = 2z - 2y = 2(z - y)\) 2. \(\begin{vmatrix} 1 & 2 \\ x & z \end{vmatrix} = z - 2x\) 3. \(\begin{vmatrix} 1 & 2 \\ x & y \end{vmatrix} = y - 2x\) Thus: \[ \vec{b} \times \vec{c} = 2(z - y)\hat{i} - (z - 2x)\hat{j} + (y - 2x)\hat{k} \] ### Step 3: Calculate \(\vec{c} \times \vec{a}\) Now we compute \(\vec{c} \times \vec{a}\): \[ \vec{c} \times \vec{a} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ x & y & z \\ 1 & 1 & 2 \end{vmatrix} \] Calculating this determinant yields: \[ = \hat{i} \begin{vmatrix} y & z \\ 1 & 2 \end{vmatrix} - \hat{j} \begin{vmatrix} x & z \\ 1 & 2 \end{vmatrix} + \hat{k} \begin{vmatrix} x & y \\ 1 & 1 \end{vmatrix} \] Calculating the 2x2 determinants: 1. \(\begin{vmatrix} y & z \\ 1 & 2 \end{vmatrix} = 2y - z\) 2. \(\begin{vmatrix} x & z \\ 1 & 2 \end{vmatrix} = 2x - z\) 3. \(\begin{vmatrix} x & y \\ 1 & 1 \end{vmatrix} = y - x\) Thus: \[ \vec{c} \times \vec{a} = (2y - z)\hat{i} - (2x - z)\hat{j} + (y - x)\hat{k} \] ### Step 4: Calculate the Scalar Triple Product Now we need to compute the scalar triple product \([\vec{a} \times \vec{b}, \vec{b} \times \vec{c}, \vec{c} \times \vec{a}]\). Using the formula: \[ [\vec{a}, \vec{b}, \vec{c}] = \vec{a} \cdot (\vec{b} \times \vec{c}) \] We can express the scalar triple product as: \[ [\vec{a} \times \vec{b}, \vec{b} \times \vec{c}, \vec{c} \times \vec{a}] = \vec{a} \cdot (\vec{b} \times \vec{c}) \cdot (\vec{c} \times \vec{a}) \] ### Step 5: Maximizing the Value To maximize the value of the scalar triple product, we need to find the conditions under which \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\) are either parallel or anti-parallel. The maximum value occurs when the angle between the vectors is either \(0\) or \(180\) degrees, which leads to the maximum value of the dot product being equal to the product of their magnitudes. ### Final Calculation The maximum value of the expression is: \[ \text{Maximum Value} = \sqrt{5}^2 = 5 \] Thus, the maximum value of \([ \vec{a} \times \vec{b}, \vec{b} \times \vec{c}, \vec{c} \times \vec{a} ]\) is: \[ \boxed{5} \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 36

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 38

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

if veca=hati+hatj+2hatk, vecb=hati+2hatj+2hatk and |vecc|=1 Such that [veca xx vecb vecb xx vecc vecc xx veca] has maximum value, then the value of |(veca xx vecb) xx vecc|^(2) is

Let veca=hati-hatj+hatk, vecb=2hati+hatj+hatk and vecc=hati+hatj-2hatk , then the value of [(veca, vecb, vecc)] is equal to

If veca=hati+hatj+hatk , vecb=2hati+hatj-hatk and vecc=4hati+3hatj+hatk then value of ((veca+vecb)xx(veca -(veca-vecb)xxvecb)))xxvecc is

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

If veca=2hati + hatj + hatk,vecb=hati + 2hatj + 2hatk ,vecc= hati + hatj + 2hatk and [vecavecbveci] hati+ [vecavecb vecj] hatj+ [veca vecb hatk] k is equal to

If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc + vecc xx veca=

If veca=hati+hatj+hatk and vecb = hati-2hatj+hatk then find vector vecc such that veca.veca = 2 and veca xx vecc = vecb

veca=2hati+hatj+2hatk, vecb=hati-hatj+hatk and non zero vector vecc are such that (veca xx vecb) xx vecc = veca xx (vecb xx vecc) . Then vector vecc may be given as

NTA MOCK TESTS-NTA JEE MOCK TEST 37-MATHEMATICS
  1. The variance of the first 20 positive integral multiples of 4 is equal...

    Text Solution

    |

  2. Eleven objects A, B, C, D, E, F, alpha, alpha, alpha, beta and beta ar...

    Text Solution

    |

  3. If veca=hati+hatj+2htk, bec=hati+2hatj+2hatk and |vecc|=1, then the m...

    Text Solution

    |

  4. If the differential equation 3x^((1)/(3))dy+x^((-2)/(3))ydx=3xdx is sa...

    Text Solution

    |

  5. Let z and w be non - zero complex numbers such that zw=|z^(2)| and |z-...

    Text Solution

    |

  6. The sum of the roots of the equation 2^((33x-2))+2^((11x+2))=2^((22x+1...

    Text Solution

    |

  7. For -(pi)/(2)le x le (pi)/(2), the number of point of intersection of ...

    Text Solution

    |

  8. A balloon moving in a straight line passes vertically above two points...

    Text Solution

    |

  9. The value of lim(xrarr0^(-))(4^(2+(3)/(x))+5(2^((1)/(x))))/(2^((1+(6)/...

    Text Solution

    |

  10. If 2^(2020)+2021 is divided by 9, then the remainder obtained is

    Text Solution

    |

  11. The value of the integral intx^((1)/(3))(1-sqrtx)^(3)dx is equal to (w...

    Text Solution

    |

  12. If y=f(x) satisfies has conditions of Rolle's theorem in [2, 6], then ...

    Text Solution

    |

  13. Let D is a point on the line l(1):x+y=2=0 and S(3, 3) is a fixed point...

    Text Solution

    |

  14. If a+b+c =0 and a^(2)+b^(2)+c^(2)-ab-bc -ca ne 0, AA a, b, c in R then...

    Text Solution

    |

  15. If ax+13y+bz+c=0 is a plane through the line intersection of 2x+3y-z+1...

    Text Solution

    |

  16. Let the pointsA:(0, a), B:(-2, 0) and C:(1, 1) form an obtuse angled t...

    Text Solution

    |

  17. Let normals to the parabola y^(2)=4x at variable points P(t(1)^(2), 2t...

    Text Solution

    |

  18. Let A be a square matrix of order 3 such that A=A^(T)=[(10,4,6),(a(21...

    Text Solution

    |

  19. If 4 dice ae rolled once, the numberof ways of getting the sum as 10 i...

    Text Solution

    |

  20. Let X(1), X(2), X(3)……. are in arithmetic progression with a common di...

    Text Solution

    |