Home
Class 12
MATHS
The function f(x)=sin^(-1)(2x-x^(2))+sqr...

The function `f(x)=sin^(-1)(2x-x^(2))+sqrt(2-(1)/(|x|)s)+(1)/([x^(2)])`
defined in the interval (where `[.]` is the greatest integer function)

A

`x in (1-sqrt2, 1)`

B

`x in [1, 1+sqrt2]`

C

`x in [1-sqrt2, 1+sqrt2]`

D

`x in [1-sqrt2, 2]`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the domain of the function \( f(x) = \sin^{-1}(2x - x^2) + \sqrt{2 - \frac{1}{|x|}} + \frac{1}{[x^2]} \), we need to analyze each component of the function separately. ### Step 1: Analyze the Inverse Sine Function The first term is \( \sin^{-1}(2x - x^2) \). The argument of the inverse sine function must lie in the interval \([-1, 1]\). 1. Set up the inequalities: \[ -1 \leq 2x - x^2 \leq 1 \] 2. Solve the first inequality: \[ 2x - x^2 \geq -1 \implies x^2 - 2x - 1 \leq 0 \] This can be factored or solved using the quadratic formula: \[ x = \frac{2 \pm \sqrt{4 + 4}}{2} = 1 \pm \sqrt{2} \] The roots are \( 1 - \sqrt{2} \) and \( 1 + \sqrt{2} \). The quadratic opens upwards, so the solution is: \[ 1 - \sqrt{2} \leq x \leq 1 + \sqrt{2} \] 3. Solve the second inequality: \[ 2x - x^2 \leq 1 \implies x^2 - 2x + 1 \geq 0 \implies (x - 1)^2 \geq 0 \] This inequality is always true for all \( x \). ### Step 2: Combine the Results From the analysis of the first term, we have: \[ 1 - \sqrt{2} \leq x \leq 1 + \sqrt{2} \] ### Step 3: Analyze the Square Root Function The second term is \( \sqrt{2 - \frac{1}{|x|}} \). The expression inside the square root must be non-negative: \[ 2 - \frac{1}{|x|} \geq 0 \implies |x| \geq \frac{1}{2} \] This gives us two intervals: \[ x \leq -\frac{1}{2} \quad \text{or} \quad x \geq \frac{1}{2} \] ### Step 4: Analyze the Greatest Integer Function The third term is \( \frac{1}{[x^2]} \). The greatest integer function \( [x^2] \) must be non-zero: \[ [x^2] \neq 0 \implies x^2 \neq 0 \implies x \neq 0 \] ### Step 5: Combine All Conditions Now we combine all the conditions: 1. From the inverse sine function: \( 1 - \sqrt{2} \leq x \leq 1 + \sqrt{2} \) 2. From the square root function: \( x \leq -\frac{1}{2} \) or \( x \geq \frac{1}{2} \) 3. From the greatest integer function: \( x \neq 0 \) ### Step 6: Final Domain The intersection of these intervals gives us the final domain: - The interval \( [1 - \sqrt{2}, 1 + \sqrt{2}] \) intersects with \( (-\infty, -\frac{1}{2}] \cup [\frac{1}{2}, \infty) \). Thus, the domain of \( f(x) \) is: \[ x \in [\frac{1}{2}, 1 + \sqrt{2}] \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 38

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 40

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

f(x)=sin^(-1)(x-x^(2))+sqrt(1-(1)/(|x|)+(1)/(x^(2)-1)) is defined in the interval where [l denotes the greatest integer function

If x^(2)+x+1-|[x]|=0, then (where [.] is greatest integer function) -

The function f(x)=cos^(-1)((2[sin x|+|cos x|])/(sin^(2)x+2sin x+(11)/(4))) is defined if x belongs to (where [.] represents the greatest integer function)

f:(2,3)rarr(0,1) defined by f(x)=x-[x], where [.] represents the greatest integer function.

The range of the function f(x)=sin^(-1)[x^(2)-(1)/(3)]-cos^(-1)[x^(2)+(2)/()] is (where, [x] represents the greatest integer value of x)

The domain of the function f(x)=(1)/([x^(2)-1] is (where [.] is greatest integer function)

Find the domain and range of the following function: f(x)=tan^(-1)(sqrt([x]+[-x]))+sqrt(2-|x|)+1/(x^(2)) (where [ ] denotes greatest integer function)

f(x)=1+[cos x]x in 0<=x<=(pi)/(2) (where [.] denotes greatest integer function)

Consider the function f(x)=cos^(-1)([2^(x)])+sin^(-1)([2^(x)]-1) , then (where [.] represents the greatest integer part function)

The number of points of non-differentiability of the function f(x)=(x^(2)-1)|x^(2)-x-2|+sin(|x|)+[(x^(2))/(2x^(2)+1)] is (where [.] is greatest integer function)

NTA MOCK TESTS-NTA JEE MOCK TEST 39-MATHEMATICS
  1. Let f(x)=(25^(x))/(25^(x)+5), then the number of solution (s) of the e...

    Text Solution

    |

  2. Let V(1)= variance of {13, 16, 19…………103} and V(2)=" variance of "{20,...

    Text Solution

    |

  3. The function f(x)=sin^(-1)(2x-x^(2))+sqrt(2-(1)/(|x|)s)+(1)/([x^(2)]) ...

    Text Solution

    |

  4. If the foot of perpendicular drawn from the point (2, 5, 1) on a line ...

    Text Solution

    |

  5. Let the line y=mx and the ellipse 2x^(2)+y^(2)=1 intersect at a point ...

    Text Solution

    |

  6. Throwing a biased die, a person will get 5 Rupees if the throws the nu...

    Text Solution

    |

  7. The sum of four numbers in arithmetical progression is 48 and the prod...

    Text Solution

    |

  8. The solution of the differential equation (dy)/(dx)=(ycos x-y^(2))/(si...

    Text Solution

    |

  9. If |a| < 1 and |b| < 1, then the sum of the series a(a+b)+a^2(a^2+b^2)...

    Text Solution

    |

  10. The angle of elevation of a cloud from a point 10 meters above the sur...

    Text Solution

    |

  11. If (1+x)^(n)=C(0)+C(1)x+C(2)x^(2)+…+C(n)x^(n), Sigma(r=0)^(n)((r+1)^(2...

    Text Solution

    |

  12. If I=int(tan^(-1)(e^(x)))/(e^(x)+e^(-x))dx=([tan^(-1)(f(x))]^(2))/(2)+...

    Text Solution

    |

  13. For xgt 0. " let A"=[(x+(1)/(x),0,0),(0,1//x,0),(0,0,12)], B=[((x)/(6(...

    Text Solution

    |

  14. The perpendicular bisector of a line segment with end points (1, 2, 6)...

    Text Solution

    |

  15. Consider the family of lines 5x+3y-2+lambda(3x-y-4)=0 and x-y+1+mu(2x-...

    Text Solution

    |

  16. If A, B are two non - singular matrices of order 3 and I is an identit...

    Text Solution

    |

  17. If A(n)=int(0)^(npi)|sinx|dx, AA n in N, then Sigma(r=1)^(10)A(r) is e...

    Text Solution

    |

  18. The perimeter of the locus of the point at which the two circules x^(2...

    Text Solution

    |

  19. The difference between the maximum and minimum values of the function ...

    Text Solution

    |

  20. Given veca, vecb and vecc are 3 vectors such that vecb, vecc are paral...

    Text Solution

    |