Home
Class 12
MATHS
If (1+x)^(n)=C(0)+C(1)x+C(2)x^(2)+…+C(n)...

If `(1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+…+C_(n)x^(n), Sigma_(r=0)^(n)((r+1)^(2))C_(r)=2^(n-2)f(n)` and if the roots of the equation f(x) = 0 are `alpha` and `beta`, then the value of `alpha^(2)+beta^(2)` is equal to (where `C_(r)` denotes `.^(n)C_(r)`)

A

13

B

10

C

17

D

20

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we will follow a systematic approach. The problem involves using properties of binomial coefficients and polynomial identities. ### Step-by-Step Solution: 1. **Understand the Given Equation**: We start with the equation: \[ (1+x)^n = C_0 + C_1 x + C_2 x^2 + \ldots + C_n x^n \] where \( C_r = \binom{n}{r} \). 2. **Rewrite the Summation**: We need to evaluate the summation: \[ \sum_{r=0}^{n} (r+1)^2 C_r = 2^{n-2} f(n) \] We can expand \( (r+1)^2 \) as: \[ (r+1)^2 = r^2 + 2r + 1 \] Therefore, we can rewrite the summation as: \[ \sum_{r=0}^{n} (r^2 + 2r + 1) C_r = \sum_{r=0}^{n} r^2 C_r + 2 \sum_{r=0}^{n} r C_r + \sum_{r=0}^{n} C_r \] 3. **Evaluate Each Term**: - The last term \( \sum_{r=0}^{n} C_r \) is simply \( 2^n \). - The term \( \sum_{r=0}^{n} r C_r \) can be evaluated using the identity: \[ \sum_{r=0}^{n} r C_r = n \cdot 2^{n-1} \] - For the term \( \sum_{r=0}^{n} r^2 C_r \), we can use the identity: \[ \sum_{r=0}^{n} r^2 C_r = n(n-1) \cdot 2^{n-2} + n \cdot 2^{n-1} \] 4. **Combine the Results**: Now substituting the evaluated terms back into the summation: \[ \sum_{r=0}^{n} (r+1)^2 C_r = n(n-1) \cdot 2^{n-2} + n \cdot 2^{n-1} + 2^n \] Simplifying this gives: \[ = n(n-1) \cdot 2^{n-2} + 2n \cdot 2^{n-2} + 2^n \] \[ = (n^2 - n + 2n) \cdot 2^{n-2} + 2^n = n^2 + n \cdot 2^{n-2} + 2^n \] 5. **Set Equal to Given Expression**: From the problem statement, we have: \[ n^2 + n \cdot 2^{n-2} + 2^n = 2^{n-2} f(n) \] This implies: \[ f(n) = n^2 + 3n + 4 \] 6. **Find Roots of the Equation**: We need to find the roots of the equation \( f(x) = 0 \): \[ x^2 + 3x + 4 = 0 \] Using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-3 \pm \sqrt{3^2 - 4 \cdot 1 \cdot 4}}{2 \cdot 1} = \frac{-3 \pm \sqrt{9 - 16}}{2} = \frac{-3 \pm \sqrt{-7}}{2} \] The roots are: \[ \alpha = \frac{-3 + i\sqrt{7}}{2}, \quad \beta = \frac{-3 - i\sqrt{7}}{2} \] 7. **Calculate \( \alpha^2 + \beta^2 \)**: Using the identity \( \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta \): - \( \alpha + \beta = -3 \) - \( \alpha \beta = 4 \) Thus: \[ \alpha^2 + \beta^2 = (-3)^2 - 2 \cdot 4 = 9 - 8 = 1 \] ### Final Result: The value of \( \alpha^2 + \beta^2 \) is \( 1 \).
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 38

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 40

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+….+C_(n)x^(n) , then sum_(r=0)^(n)sum_(s=0)^(n)(r+s)C_(r)C_(s) is equal to :

Sigma_(r=0)^(n)((r^(2))/(r+1)).^(n)C_(r) is equal to

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+….+C_(n)x^(n) , then sumsum_(0lerltslen)(r+s)C_(r)C_(s) is equal to :

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+… and +C_(n)x^(n) Sigma_(r=0)^(50)(C_(r)^(2))/((r+1))=(m!)/((n!)^(2)), then the value of (m+n) is equal to (where C_(r) represents .^(n)C_(r) )

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+….+C_(n)x^(n) , then the value of sumsum_(0lerltslen)(C_(r)+C_(s))^(2) is :

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+….+C_(n)x^(n) , then the value of sumsum_(0lerltslen)(r+s)(C_(r)+C_(s)) is :

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+…..+C_(n)x^(n) , then the value of sumsum_(0lerltslen)(r*s)C_(r)C_(s) is :

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+….+C_(n)x^(n) , then the value of sumsum_(0lerltslen)(r+s)(C_(r)+C_(s)+C_(r)C_(s)) is :

NTA MOCK TESTS-NTA JEE MOCK TEST 39-MATHEMATICS
  1. If the foot of perpendicular drawn from the point (2, 5, 1) on a line ...

    Text Solution

    |

  2. Let the line y=mx and the ellipse 2x^(2)+y^(2)=1 intersect at a point ...

    Text Solution

    |

  3. Throwing a biased die, a person will get 5 Rupees if the throws the nu...

    Text Solution

    |

  4. The sum of four numbers in arithmetical progression is 48 and the prod...

    Text Solution

    |

  5. The solution of the differential equation (dy)/(dx)=(ycos x-y^(2))/(si...

    Text Solution

    |

  6. If |a| < 1 and |b| < 1, then the sum of the series a(a+b)+a^2(a^2+b^2)...

    Text Solution

    |

  7. The angle of elevation of a cloud from a point 10 meters above the sur...

    Text Solution

    |

  8. If (1+x)^(n)=C(0)+C(1)x+C(2)x^(2)+…+C(n)x^(n), Sigma(r=0)^(n)((r+1)^(2...

    Text Solution

    |

  9. If I=int(tan^(-1)(e^(x)))/(e^(x)+e^(-x))dx=([tan^(-1)(f(x))]^(2))/(2)+...

    Text Solution

    |

  10. For xgt 0. " let A"=[(x+(1)/(x),0,0),(0,1//x,0),(0,0,12)], B=[((x)/(6(...

    Text Solution

    |

  11. The perpendicular bisector of a line segment with end points (1, 2, 6)...

    Text Solution

    |

  12. Consider the family of lines 5x+3y-2+lambda(3x-y-4)=0 and x-y+1+mu(2x-...

    Text Solution

    |

  13. If A, B are two non - singular matrices of order 3 and I is an identit...

    Text Solution

    |

  14. If A(n)=int(0)^(npi)|sinx|dx, AA n in N, then Sigma(r=1)^(10)A(r) is e...

    Text Solution

    |

  15. The perimeter of the locus of the point at which the two circules x^(2...

    Text Solution

    |

  16. The difference between the maximum and minimum values of the function ...

    Text Solution

    |

  17. Given veca, vecb and vecc are 3 vectors such that vecb, vecc are paral...

    Text Solution

    |

  18. Let f(x) is a differentiable function on x in R, such that f(x+y)=f(x...

    Text Solution

    |

  19. If x and y are the solutions of the equation 12sinx+5cos x=2y^(2)-8y+2...

    Text Solution

    |

  20. The value of (Sigma(k=1)^(4))(sin.(2pik)/(5)-icos.(2pik)/(5))^(4) is (...

    Text Solution

    |