Home
Class 12
MATHS
For xgt 0. " let A"=[(x+(1)/(x),0,0),(0,...

For `xgt 0. " let A"=[(x+(1)/(x),0,0),(0,1//x,0),(0,0,12)], B=[((x)/(6(x^(2)+1)),0,0),(0,(x)/(4),0),(0,0,(1)/(36)]` be two matrices and `C=AB+(AB)^(2)+….+(AB)^(n).` Then, `Tr(lim_(nrarroo)C)` is equal to (where `Tr(A)` is the trace of the matrix A i.e. the sum of the principle diagonal elements of A)

A

1

B

`(31)/(30)`

C

`(6)/(5)`

D

`(1)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the trace of the limit of the matrix \( C = AB + (AB)^2 + \ldots + (AB)^n \) as \( n \) approaches infinity, where \( A \) and \( B \) are given matrices. ### Step 1: Define the matrices \( A \) and \( B \) The matrices are given as: \[ A = \begin{pmatrix} x + \frac{1}{x} & 0 & 0 \\ 0 & \frac{1}{x} & 0 \\ 0 & 0 & 12 \end{pmatrix}, \quad B = \begin{pmatrix} \frac{x}{6(x^2 + 1)} & 0 & 0 \\ 0 & \frac{x}{4} & 0 \\ 0 & 0 & \frac{1}{36} \end{pmatrix} \] ### Step 2: Calculate the product \( AB \) To find \( AB \), we multiply the two matrices: \[ AB = \begin{pmatrix} (x + \frac{1}{x}) \cdot \frac{x}{6(x^2 + 1)} & 0 & 0 \\ 0 & \frac{1}{x} \cdot \frac{x}{4} & 0 \\ 0 & 0 & 12 \cdot \frac{1}{36} \end{pmatrix} \] Calculating each element: - First element: \( \frac{(x + \frac{1}{x})x}{6(x^2 + 1)} = \frac{x^2 + 1}{6(x^2 + 1)} = \frac{1}{6} \) - Second element: \( \frac{1}{x} \cdot \frac{x}{4} = \frac{1}{4} \) - Third element: \( 12 \cdot \frac{1}{36} = \frac{1}{3} \) Thus, we have: \[ AB = \begin{pmatrix} \frac{1}{6} & 0 & 0 \\ 0 & \frac{1}{4} & 0 \\ 0 & 0 & \frac{1}{3} \end{pmatrix} \] ### Step 3: Calculate \( (AB)^2 \) Since \( AB \) is a diagonal matrix, squaring it gives: \[ (AB)^2 = \begin{pmatrix} \left(\frac{1}{6}\right)^2 & 0 & 0 \\ 0 & \left(\frac{1}{4}\right)^2 & 0 \\ 0 & 0 & \left(\frac{1}{3}\right)^2 \end{pmatrix} = \begin{pmatrix} \frac{1}{36} & 0 & 0 \\ 0 & \frac{1}{16} & 0 \\ 0 & 0 & \frac{1}{9} \end{pmatrix} \] ### Step 4: Generalize \( (AB)^n \) For any \( n \): \[ (AB)^n = \begin{pmatrix} \left(\frac{1}{6}\right)^n & 0 & 0 \\ 0 & \left(\frac{1}{4}\right)^n & 0 \\ 0 & 0 & \left(\frac{1}{3}\right)^n \end{pmatrix} \] ### Step 5: Calculate \( C \) The matrix \( C \) can be expressed as a geometric series: \[ C = AB + (AB)^2 + \ldots + (AB)^n = \sum_{k=1}^{n} (AB)^k \] This is a geometric series where: \[ C = \begin{pmatrix} \frac{1/6}{1 - 1/6} & 0 & 0 \\ 0 & \frac{1/4}{1 - 1/4} & 0 \\ 0 & 0 & \frac{1/3}{1 - 1/3} \end{pmatrix} = \begin{pmatrix} \frac{1/6}{5/6} & 0 & 0 \\ 0 & \frac{1/4}{3/4} & 0 \\ 0 & 0 & \frac{1/3}{2/3} \end{pmatrix} \] Calculating each term: - First element: \( \frac{1}{5} \) - Second element: \( \frac{1}{3} \) - Third element: \( \frac{1}{2} \) Thus, \[ C = \begin{pmatrix} \frac{1}{5} & 0 & 0 \\ 0 & \frac{1}{3} & 0 \\ 0 & 0 & \frac{1}{2} \end{pmatrix} \] ### Step 6: Calculate the trace of \( C \) The trace of a matrix is the sum of its diagonal elements: \[ \text{Tr}(C) = \frac{1}{5} + \frac{1}{3} + \frac{1}{2} \] Finding a common denominator (which is 30): \[ \text{Tr}(C) = \frac{6}{30} + \frac{10}{30} + \frac{15}{30} = \frac{31}{30} \] ### Final Answer Thus, the trace of \( \lim_{n \to \infty} C \) is: \[ \text{Tr}\left(\lim_{n \to \infty} C\right) = \frac{31}{30} \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 38

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 40

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr0)e^(-1/x) is equal to

Let A+2B=[{:(2,4,0),(6,-3,3),(-5,3,5):}] and 2A-B=[{:(6,-2,4),(6,1,5),(6,3,4):}] , then tr (A) - tr (B) is equal to (where , tr (A) =n trace of matrix x A i.e. . Sum of the principle diagonal elements of matrix A)

Let A=[(1,0,3),(0,b,5),(-(1)/(3),0,c)] , where a, b, c are positive integers. If tr(A)=7 , then the greatest value of |A| is (where tr (A) denotes the trace of matric A i.e. the sum of principal diagonal elements of matrix A)

lim_(x to 0)(abs(0))/x is equal to :

Let Z=[(1,1,3),(5,1,2),(3,1,0)] and P=[(1,0,2),(2,1,0),(3,0,1)] . If Z=PQ^(-1) , where Q is a square matrix of order 3, then the value of Tr((adjQ)P) is equal to (where Tr(A) represents the trace of a matrix A i.e. the sum of all the diagonal elements of the matrix A and adjB represents the adjoint matrix of matrix B)

If A[(1, 0, 0),(x, 1, 0),(x, x, 1)] and I=[(1, 0, 0),(0,1,0),(0,0,1)] , then A^(3)-3A^(2)+3A is equal to

If {:A=[(1,2,x),(0,1,0),(0,0,1)]andB=[(1,-2,y),(0,1,0),(0,0,1)]:} and AB=I_3 , then x + y equals

(lim_(x rarr0)(sin2x)/(x) is equal to a.1b*1/2c.2d.0

If A=[{:(a,0,0),(0,b,0),(0,0,c):}], a=7^(x), b=7^(7^(x)), c=7^(7^(7^(x))), " then " intabs(A)dx, " where " abs(A) is the determinant of the matrix A, equals

NTA MOCK TESTS-NTA JEE MOCK TEST 39-MATHEMATICS
  1. If the foot of perpendicular drawn from the point (2, 5, 1) on a line ...

    Text Solution

    |

  2. Let the line y=mx and the ellipse 2x^(2)+y^(2)=1 intersect at a point ...

    Text Solution

    |

  3. Throwing a biased die, a person will get 5 Rupees if the throws the nu...

    Text Solution

    |

  4. The sum of four numbers in arithmetical progression is 48 and the prod...

    Text Solution

    |

  5. The solution of the differential equation (dy)/(dx)=(ycos x-y^(2))/(si...

    Text Solution

    |

  6. If |a| < 1 and |b| < 1, then the sum of the series a(a+b)+a^2(a^2+b^2)...

    Text Solution

    |

  7. The angle of elevation of a cloud from a point 10 meters above the sur...

    Text Solution

    |

  8. If (1+x)^(n)=C(0)+C(1)x+C(2)x^(2)+…+C(n)x^(n), Sigma(r=0)^(n)((r+1)^(2...

    Text Solution

    |

  9. If I=int(tan^(-1)(e^(x)))/(e^(x)+e^(-x))dx=([tan^(-1)(f(x))]^(2))/(2)+...

    Text Solution

    |

  10. For xgt 0. " let A"=[(x+(1)/(x),0,0),(0,1//x,0),(0,0,12)], B=[((x)/(6(...

    Text Solution

    |

  11. The perpendicular bisector of a line segment with end points (1, 2, 6)...

    Text Solution

    |

  12. Consider the family of lines 5x+3y-2+lambda(3x-y-4)=0 and x-y+1+mu(2x-...

    Text Solution

    |

  13. If A, B are two non - singular matrices of order 3 and I is an identit...

    Text Solution

    |

  14. If A(n)=int(0)^(npi)|sinx|dx, AA n in N, then Sigma(r=1)^(10)A(r) is e...

    Text Solution

    |

  15. The perimeter of the locus of the point at which the two circules x^(2...

    Text Solution

    |

  16. The difference between the maximum and minimum values of the function ...

    Text Solution

    |

  17. Given veca, vecb and vecc are 3 vectors such that vecb, vecc are paral...

    Text Solution

    |

  18. Let f(x) is a differentiable function on x in R, such that f(x+y)=f(x...

    Text Solution

    |

  19. If x and y are the solutions of the equation 12sinx+5cos x=2y^(2)-8y+2...

    Text Solution

    |

  20. The value of (Sigma(k=1)^(4))(sin.(2pik)/(5)-icos.(2pik)/(5))^(4) is (...

    Text Solution

    |