Home
Class 12
MATHS
The value of (Sigma(k=1)^(4))(sin.(2pik)...

The value of `(Sigma_(k=1)^(4))(sin.(2pik)/(5)-icos.(2pik)/(5))^(4)` is (where i is iota)

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ \sum_{k=1}^{4} \left( \sin\left(\frac{2\pi k}{5}\right) - i \cos\left(\frac{2\pi k}{5}\right) \right)^{4} \] ### Step-by-Step Solution: **Step 1: Rewrite the expression.** We start by rewriting the expression inside the summation: \[ \sin\left(\frac{2\pi k}{5}\right) - i \cos\left(\frac{2\pi k}{5}\right) = -i\left(\cos\left(\frac{2\pi k}{5}\right) + i \sin\left(\frac{2\pi k}{5}\right)\right) \] Using Euler's formula, we can express this as: \[ -i e^{i \frac{2\pi k}{5}} \] **Hint:** Use Euler's formula \( e^{i\theta} = \cos(\theta) + i \sin(\theta) \) to rewrite trigonometric functions in exponential form. --- **Step 2: Substitute into the summation.** Now we substitute this back into the summation: \[ \sum_{k=1}^{4} \left(-i e^{i \frac{2\pi k}{5}}\right)^{4} \] **Step 3: Simplify the expression.** Calculating the fourth power: \[ (-i)^{4} \cdot \left(e^{i \frac{2\pi k}{5}}\right)^{4} = 1 \cdot e^{i \frac{8\pi k}{5}} = e^{i \frac{8\pi k}{5}} \] So the summation becomes: \[ \sum_{k=1}^{4} e^{i \frac{8\pi k}{5}} \] **Hint:** Remember that \( (-i)^4 = 1 \) since \( i^2 = -1 \). --- **Step 4: Evaluate the summation.** Now we need to evaluate: \[ \sum_{k=1}^{4} e^{i \frac{8\pi k}{5}} = e^{i \frac{8\pi}{5}} + e^{i \frac{16\pi}{5}} + e^{i \frac{24\pi}{5}} + e^{i \frac{32\pi}{5}} \] Notice that \( e^{i \frac{8\pi}{5}} \), \( e^{i \frac{16\pi}{5}} \), \( e^{i \frac{24\pi}{5}} \), and \( e^{i \frac{32\pi}{5}} \) are the 5th roots of unity (excluding \( k=0 \)). The sum of all 5th roots of unity is zero. **Hint:** The roots of unity sum to zero: \( \sum_{k=0}^{n-1} e^{i \frac{2\pi k}{n}} = 0 \). --- **Step 5: Conclude the result.** Since the sum of the 5th roots of unity is zero, we have: \[ \sum_{k=1}^{4} e^{i \frac{8\pi k}{5}} = -1 \] Thus, our original expression simplifies to: \[ -i \cdot (-1) = i \] Finally, we need to compute: \[ (i)^{4} = (i^2)^{2} = (-1)^{2} = 1 \] ### Final Answer: The value of the expression is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 38

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 40

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

The value of Sigma_(i=1)^(6) (sin .(2pik)/(7)-i cos .(2pik)/(7))

The value of sum_(k=1)^(5)(1)/(sin(k+1)sin(k+2)) is

Find the value of sum_(k=1)^10[sin((2pik)/(11))-icos((2pik)/(11))],wherei=sqrt(-1).

Prove that the roots of the equation x^(10)+11x^(5)-1=0 are the values of ((+-sqrt(5)-1)/(2))(cos((2r pi)/(5))+-iota sin((2r pi)/(5))) where r is an integer.

The value of Sigma_(k=1)^(99)(i^(k!)+omega^(k!)) is (where, i=sqrt(-1) amd omega is non - real cube root of unity)

Sigma_(n=1)^(5)sin ^(-1) ( sin ( 2n -1)) is

The value of 5 * cot ( Sigma_(k =1)^(5) cot ^(-1) ( k^(2) + k + 1)) is equal to

NTA MOCK TESTS-NTA JEE MOCK TEST 39-MATHEMATICS
  1. If the foot of perpendicular drawn from the point (2, 5, 1) on a line ...

    Text Solution

    |

  2. Let the line y=mx and the ellipse 2x^(2)+y^(2)=1 intersect at a point ...

    Text Solution

    |

  3. Throwing a biased die, a person will get 5 Rupees if the throws the nu...

    Text Solution

    |

  4. The sum of four numbers in arithmetical progression is 48 and the prod...

    Text Solution

    |

  5. The solution of the differential equation (dy)/(dx)=(ycos x-y^(2))/(si...

    Text Solution

    |

  6. If |a| < 1 and |b| < 1, then the sum of the series a(a+b)+a^2(a^2+b^2)...

    Text Solution

    |

  7. The angle of elevation of a cloud from a point 10 meters above the sur...

    Text Solution

    |

  8. If (1+x)^(n)=C(0)+C(1)x+C(2)x^(2)+…+C(n)x^(n), Sigma(r=0)^(n)((r+1)^(2...

    Text Solution

    |

  9. If I=int(tan^(-1)(e^(x)))/(e^(x)+e^(-x))dx=([tan^(-1)(f(x))]^(2))/(2)+...

    Text Solution

    |

  10. For xgt 0. " let A"=[(x+(1)/(x),0,0),(0,1//x,0),(0,0,12)], B=[((x)/(6(...

    Text Solution

    |

  11. The perpendicular bisector of a line segment with end points (1, 2, 6)...

    Text Solution

    |

  12. Consider the family of lines 5x+3y-2+lambda(3x-y-4)=0 and x-y+1+mu(2x-...

    Text Solution

    |

  13. If A, B are two non - singular matrices of order 3 and I is an identit...

    Text Solution

    |

  14. If A(n)=int(0)^(npi)|sinx|dx, AA n in N, then Sigma(r=1)^(10)A(r) is e...

    Text Solution

    |

  15. The perimeter of the locus of the point at which the two circules x^(2...

    Text Solution

    |

  16. The difference between the maximum and minimum values of the function ...

    Text Solution

    |

  17. Given veca, vecb and vecc are 3 vectors such that vecb, vecc are paral...

    Text Solution

    |

  18. Let f(x) is a differentiable function on x in R, such that f(x+y)=f(x...

    Text Solution

    |

  19. If x and y are the solutions of the equation 12sinx+5cos x=2y^(2)-8y+2...

    Text Solution

    |

  20. The value of (Sigma(k=1)^(4))(sin.(2pik)/(5)-icos.(2pik)/(5))^(4) is (...

    Text Solution

    |