Home
Class 12
MATHS
If f(x)=sqrt(x-4sqrt(x-4))+tan^(-1)((1-2...

If `f(x)=sqrt(x-4sqrt(x-4))+tan^(-1)((1-2x)/(2+x)), AA 4 lt x lt 8`,
then the value of `f'(5)` is equal to

A

`-(7)/(13)`

B

0

C

`(5)/(13)`

D

`-(8)/(13)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( f'(5) \) for the function \[ f(x) = \sqrt{x - 4\sqrt{x - 4}} + \tan^{-1}\left(\frac{1 - 2x}{2 + x}\right) \] defined for \( 4 < x < 8 \), we will follow these steps: ### Step 1: Simplify the function \( f(x) \) We start by rewriting the first term \( \sqrt{x - 4\sqrt{x - 4}} \). We can express it as: \[ \sqrt{x - 4\sqrt{x - 4}} = \sqrt{(\sqrt{x - 4})^2 - 4(\sqrt{x - 4})} \] Let \( y = \sqrt{x - 4} \), then \( y^2 = x - 4 \) or \( x = y^2 + 4 \). Substituting this into the equation gives: \[ \sqrt{y^2 - 4y} = \sqrt{(y - 2)^2} \] Thus, we have: \[ \sqrt{x - 4\sqrt{x - 4}} = |y - 2| = 2 - \sqrt{x - 4} \quad \text{(since \( y < 2 \) for \( 4 < x < 8 \))} \] ### Step 2: Rewrite \( f(x) \) Now we can rewrite \( f(x) \): \[ f(x) = 2 - \sqrt{x - 4} + \tan^{-1}\left(\frac{1 - 2x}{2 + x}\right) \] ### Step 3: Differentiate \( f(x) \) Next, we differentiate \( f(x) \): \[ f'(x) = -\frac{1}{2\sqrt{x - 4}} + \frac{d}{dx} \left(\tan^{-1}\left(\frac{1 - 2x}{2 + x}\right)\right) \] Using the chain rule for the derivative of \( \tan^{-1}(u) \): \[ \frac{d}{dx}\left(\tan^{-1}(u)\right) = \frac{1}{1 + u^2} \cdot \frac{du}{dx} \] where \( u = \frac{1 - 2x}{2 + x} \). ### Step 4: Find \( \frac{du}{dx} \) Calculating \( \frac{du}{dx} \): \[ u = \frac{1 - 2x}{2 + x} \] Using the quotient rule: \[ \frac{du}{dx} = \frac{(2 + x)(-2) - (1 - 2x)(1)}{(2 + x)^2} \] Simplifying this gives: \[ \frac{du}{dx} = \frac{-2(2 + x) - (1 - 2x)}{(2 + x)^2} = \frac{-4 - 2x - 1 + 2x}{(2 + x)^2} = \frac{-5}{(2 + x)^2} \] ### Step 5: Substitute back into \( f'(x) \) Now substituting back into \( f'(x) \): \[ f'(x) = -\frac{1}{2\sqrt{x - 4}} - \frac{5}{(2 + x)^2(1 + u^2)} \] ### Step 6: Evaluate \( f'(5) \) Now we need to evaluate \( f'(5) \): 1. Calculate \( \sqrt{5 - 4} = 1 \). 2. Calculate \( u \) at \( x = 5 \): \[ u = \frac{1 - 2(5)}{2 + 5} = \frac{1 - 10}{7} = -\frac{9}{7} \] 3. Calculate \( 1 + u^2 \): \[ 1 + \left(-\frac{9}{7}\right)^2 = 1 + \frac{81}{49} = \frac{49 + 81}{49} = \frac{130}{49} \] 4. Substitute \( x = 5 \) into \( f'(x) \): \[ f'(5) = -\frac{1}{2 \cdot 1} - \frac{5}{(2 + 5)^2 \cdot \frac{130}{49}} = -\frac{1}{2} - \frac{5}{49 \cdot \frac{130}{49}} = -\frac{1}{2} - \frac{5 \cdot 49}{49 \cdot 130} = -\frac{1}{2} - \frac{5}{130} \] 5. Simplifying gives: \[ -\frac{1}{2} - \frac{1}{26} = -\frac{13}{26} - \frac{1}{26} = -\frac{14}{26} = -\frac{7}{13} \] ### Final Answer Thus, the value of \( f'(5) \) is \[ \boxed{-\frac{7}{13}} \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 39

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 41

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If the function f(x)=cos^(-1)(x^((3)/(2))-sqrt(1-x-x^(2)+x^(3))) (" where, "AA 0 lt x lt 1), then the value of |sqrt3f'((1)/(2))| is equal to ("take "sqrt3=1.73)

If f(x)+2f(1-x)=6x(AA x in R) , then the vlaue of (3)/(4)((f(8))/(f'(1))) is equal to

If f(x) = tan^(-1)(sqrt((1+sinx)/(1-sinx))), 0 lt x lt pi/2 , then f'(pi/6) is

If f(x) =(x-4)/(2sqrt(x)) , then f^(')(1) is equal to

If f(x)=sqrt(x+2sqrt(2x-4))+sqrt(x-2sqrt(2x-4)) then the value of 10 f'(102^(+)) , is

If f(x) = sqrt(x-1) + sqrt(x+24 -10sqrt(x-1)), 1 lt x lt 26 be real valued function, then 'f' (x) for 1 lt x lt 26 is:

If f(x)=tan^(-1)sqrt(x^(2)+4x) +sin^(-1)sqrt(x^(2)+4x+1)

NTA MOCK TESTS-NTA JEE MOCK TEST 40-MATHEMATICS
  1. Let the tangents at point P and R on the parabola y=x^(2) intersects a...

    Text Solution

    |

  2. If f(x)=sqrt(x-4sqrt(x-4))+tan^(-1)((1-2x)/(2+x)), AA 4 lt x lt 8, t...

    Text Solution

    |

  3. The statement ~(phArr q) is not equivalent to

    Text Solution

    |

  4. For the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1, distance between ...

    Text Solution

    |

  5. The mean square deviation of a set of observation x(1), x(2)……x(n) abo...

    Text Solution

    |

  6. If f(x)={{:(x^(p+1)cos.(1)/(x)":", x ne 0),(0":", x=0):} then at x = ...

    Text Solution

    |

  7. The sum of the roots of the equation |x^(2)-x-6|=x+2 is

    Text Solution

    |

  8. The sum (upto two decimal places) of the infinite series (7)/(17)+(77)...

    Text Solution

    |

  9. The value of lim(nrarroo)(cos x cos .(x)/(2)cos.(x)/(4)..cos .(x)/(2^(...

    Text Solution

    |

  10. Two friends A and B have equal number of sons. There are 3 cinema tick...

    Text Solution

    |

  11. If arg ((z-(10+6t))/(z-(4+2i)))=(pi)/(5) (where z is a complex number)...

    Text Solution

    |

  12. If (1+x)^(n)=C(0)+C(1)x+C(2)x^(2)+… and +C(n)x^(n) Sigma(r=0)^(50)(C...

    Text Solution

    |

  13. The maximum slope of the curve y=-x^(3)+3x^(2)-4x+9 is

    Text Solution

    |

  14. The value of the integral int("cosec"^(2)x-2019)/(cos^(2019)x)dx is eq...

    Text Solution

    |

  15. If int(0)^(oo)(sinx)/(x)dx=k, then the value of int(0)^(oo)(sin^(3)x)/...

    Text Solution

    |

  16. The equation of the locus of the foot of perpendicular drawn from (5, ...

    Text Solution

    |

  17. If {[(5,1,4),(7,6,2),(1,3,5)][(1,6,-7),(6,2,4),(-7,4,3)][(5,7,1),(1,6,...

    Text Solution

    |

  18. The lengths of the tangents from any point on the circle x^(2)+y^(2)+8...

    Text Solution

    |

  19. Let A and B are two non - singular matrices of order 3 such that |A|=3...

    Text Solution

    |

  20. The distance of the plane x+2y-z=2 from the point (2, -1, 3), measured...

    Text Solution

    |