Home
Class 12
MATHS
If f(x)={{:(x^(p+1)cos.(1)/(x)":", x ne ...

If `f(x)={{:(x^(p+1)cos.(1)/(x)":", x ne 0),(0":", x=0):}` then at x = 0 the function f(x) is

A

continuous if `p gt -1` and differentiable if `p gt 0`

B

Continuous if `p gt0` and differentiable if `p gt -1`

C

Continuous and differetiable if `p gt -1`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To determine the behavior of the function \( f(x) \) at \( x = 0 \), we need to analyze its continuity and differentiability based on the given definition of the function. ### Step 1: Define the function The function is defined as: \[ f(x) = \begin{cases} x^{p+1} \cos\left(\frac{1}{x}\right) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases} \] ### Step 2: Check continuity at \( x = 0 \) For \( f(x) \) to be continuous at \( x = 0 \), the following condition must hold: \[ \lim_{x \to 0} f(x) = f(0) \] Since \( f(0) = 0 \), we need to find \( \lim_{x \to 0} f(x) \). #### Step 2.1: Calculate the limit as \( x \to 0 \) We will evaluate the limit: \[ \lim_{x \to 0} f(x) = \lim_{x \to 0} x^{p+1} \cos\left(\frac{1}{x}\right) \] The term \( \cos\left(\frac{1}{x}\right) \) oscillates between -1 and 1 as \( x \to 0 \). Therefore, we can bound the limit: \[ -x^{p+1} \leq x^{p+1} \cos\left(\frac{1}{x}\right) \leq x^{p+1} \] Now, we need to consider the behavior of \( x^{p+1} \) as \( x \to 0 \): - If \( p + 1 > 0 \) (i.e., \( p > -1 \)), then \( x^{p+1} \to 0 \). - If \( p + 1 \leq 0 \) (i.e., \( p \leq -1 \)), then \( x^{p+1} \) does not approach 0. Thus, for continuity at \( x = 0 \): \[ \lim_{x \to 0} f(x) = 0 \quad \text{if } p > -1 \] ### Step 3: Check differentiability at \( x = 0 \) For \( f(x) \) to be differentiable at \( x = 0 \), the following must hold: \[ f'(0) = \lim_{h \to 0} \frac{f(h) - f(0)}{h} = \lim_{h \to 0} \frac{f(h)}{h} \] Substituting \( f(h) \): \[ \lim_{h \to 0} \frac{h^{p+1} \cos\left(\frac{1}{h}\right)}{h} = \lim_{h \to 0} h^{p} \cos\left(\frac{1}{h}\right) \] Again, since \( \cos\left(\frac{1}{h}\right) \) oscillates between -1 and 1, we can bound this limit: \[ -h^{p} \leq h^{p} \cos\left(\frac{1}{h}\right) \leq h^{p} \] Now, we consider the behavior of \( h^{p} \) as \( h \to 0 \): - If \( p > 0 \), then \( h^{p} \to 0 \). - If \( p \leq 0 \), then \( h^{p} \) does not approach 0. Thus, for differentiability at \( x = 0 \): \[ \lim_{h \to 0} h^{p} \cos\left(\frac{1}{h}\right) = 0 \quad \text{if } p > 0 \] ### Conclusion - The function \( f(x) \) is continuous at \( x = 0 \) if \( p > -1 \). - The function \( f(x) \) is differentiable at \( x = 0 \) if \( p > 0 \). ### Final Answer The function \( f(x) \) is continuous at \( x = 0 \) if \( p > -1 \) and differentiable at \( x = 0 \) if \( p > 0 \).
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 39

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 41

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If f(x)={(x^(k) sin((1)/(x))",",x ne 0),(0",", x =0):} is continuous at x = 0, then

If f(x)={{:(,(x-a)^(n)cos ((1)/(x-a)), x ne a),(,0,x=a):} then at x=a, f(x) is

If f(x)={((1)/(1+e^(1//x))"," ,x ne 0),(0",", x =0):} then f(x) is :

If f(x)={(e^((1)/(x))/(1+e^((1)/(x)))",", x ne0),(0",",x=0):} , then

If f(x)={:{(xe^(-(1/(|x|) + 1/x)), x ne 0),(0 , x =0 ):} then f(x) is

If f(x) = {{:((sin^(-1)x)^(2)cos((1)/(x))",",x ne 0),(0",",x = 0):} then f(x) is

If f(x) = {{:(1/(1+e^(1//x)), x ne 0),(0,x=0):} then f(x) is

NTA MOCK TESTS-NTA JEE MOCK TEST 40-MATHEMATICS
  1. For the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1, distance between ...

    Text Solution

    |

  2. The mean square deviation of a set of observation x(1), x(2)……x(n) abo...

    Text Solution

    |

  3. If f(x)={{:(x^(p+1)cos.(1)/(x)":", x ne 0),(0":", x=0):} then at x = ...

    Text Solution

    |

  4. The sum of the roots of the equation |x^(2)-x-6|=x+2 is

    Text Solution

    |

  5. The sum (upto two decimal places) of the infinite series (7)/(17)+(77)...

    Text Solution

    |

  6. The value of lim(nrarroo)(cos x cos .(x)/(2)cos.(x)/(4)..cos .(x)/(2^(...

    Text Solution

    |

  7. Two friends A and B have equal number of sons. There are 3 cinema tick...

    Text Solution

    |

  8. If arg ((z-(10+6t))/(z-(4+2i)))=(pi)/(5) (where z is a complex number)...

    Text Solution

    |

  9. If (1+x)^(n)=C(0)+C(1)x+C(2)x^(2)+… and +C(n)x^(n) Sigma(r=0)^(50)(C...

    Text Solution

    |

  10. The maximum slope of the curve y=-x^(3)+3x^(2)-4x+9 is

    Text Solution

    |

  11. The value of the integral int("cosec"^(2)x-2019)/(cos^(2019)x)dx is eq...

    Text Solution

    |

  12. If int(0)^(oo)(sinx)/(x)dx=k, then the value of int(0)^(oo)(sin^(3)x)/...

    Text Solution

    |

  13. The equation of the locus of the foot of perpendicular drawn from (5, ...

    Text Solution

    |

  14. If {[(5,1,4),(7,6,2),(1,3,5)][(1,6,-7),(6,2,4),(-7,4,3)][(5,7,1),(1,6,...

    Text Solution

    |

  15. The lengths of the tangents from any point on the circle x^(2)+y^(2)+8...

    Text Solution

    |

  16. Let A and B are two non - singular matrices of order 3 such that |A|=3...

    Text Solution

    |

  17. The distance of the plane x+2y-z=2 from the point (2, -1, 3), measured...

    Text Solution

    |

  18. The number of the positive integral solutions (x,y, z) of the equation...

    Text Solution

    |

  19. If f(x)=cos^(-1)(x^((3)/(2))-sqrt(1-x-x^(2)+x^(3))),AA 0 le x le 1 the...

    Text Solution

    |

  20. If veca,vecb are vectors perpendicular to each other and |veca|=2, |ve...

    Text Solution

    |