Home
Class 12
MATHS
If (1+x)^(n)=C(0)+C(1)x+C(2)x^(2)+… and ...

If `(1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+… and +C_(n)x^(n)`
`Sigma_(r=0)^(50)(C_(r)^(2))/((r+1))=(m!)/((n!)^(2)),` then the value of `(m+n)` is equal to (where `C_(r)` represents `.^(n)C_(r)` )

A

149

B

152

C

155

D

146

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression given and find the values of \( m \) and \( n \) such that: \[ \sum_{r=0}^{50} \frac{C_r^2}{r+1} = \frac{m!}{(n!)^2} \] where \( C_r = \binom{n}{r} \). ### Step 1: Understanding the Binomial Expansion The binomial expansion of \( (1+x)^n \) is given by: \[ (1+x)^n = C_0 + C_1 x + C_2 x^2 + \ldots + C_n x^n \] This can be written in summation notation as: \[ (1+x)^n = \sum_{r=0}^{n} C_r x^r \] ### Step 2: Integrating the Binomial Expansion To find the sum \( \sum_{r=0}^{50} \frac{C_r^2}{r+1} \), we can use integration. We integrate \( (1+x)^n \): \[ \int (1+x)^n \, dx = \frac{(1+x)^{n+1}}{n+1} + C \] ### Step 3: Evaluating the Integral We can evaluate the integral from 0 to \( x \): \[ \int_0^x (1+t)^n \, dt = \left[ \frac{(1+t)^{n+1}}{n+1} \right]_0^x = \frac{(1+x)^{n+1} - 1}{n+1} \] ### Step 4: Using the Result of Integration Now, we can express the integral in terms of the binomial coefficients: \[ \int_0^x (1+t)^n \, dt = \sum_{r=0}^{n} C_r \frac{x^{r+1}}{r+1} \] ### Step 5: Comparing Coefficients Now, we need to multiply the two expansions: 1. \( (1+x)^{n+1} \) 2. \( (1+x)^{n} \) When we multiply these two expansions, we can find the coefficient of \( x^{51} \): \[ (1+x)^{n+1} \cdot (1+x)^{n} = (1+x)^{2n+1} \] ### Step 6: Coefficient of \( x^{51} \) The coefficient of \( x^{51} \) in \( (1+x)^{2n+1} \) is given by: \[ \binom{2n+1}{51} \] ### Step 7: Setting Up the Equation From the earlier steps, we have: \[ \sum_{r=0}^{50} \frac{C_r^2}{r+1} = \frac{1}{n+1} \cdot \binom{2n+1}{51} \] ### Step 8: Equating to Given Expression We know from the problem statement that: \[ \sum_{r=0}^{50} \frac{C_r^2}{r+1} = \frac{m!}{(n!)^2} \] ### Step 9: Finding \( m \) and \( n \) From the equation: \[ \frac{1}{n+1} \cdot \binom{2n+1}{51} = \frac{m!}{(n!)^2} \] We can deduce that \( m = 2n + 1 \) and \( n = 51 \). ### Step 10: Calculating \( m+n \) Thus, we have: \[ m = 101 \quad \text{and} \quad n = 51 \] So, \[ m+n = 101 + 51 = 152 \] ### Final Answer The value of \( m+n \) is: \[ \boxed{152} \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 39

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 41

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

Sigma_(r=0)^(n)((r^(2))/(r+1)).^(n)C_(r) is equal to

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+….+C_(n)x^(n) , then sum_(r=0)^(n)sum_(s=0)^(n)(r+s)C_(r)C_(s) is equal to :

If (1+x)^(n)=sum_(r=0)^(n)C_(r)x^(n) and sum_(r=0)^(n)(C_(r))/(r+1)=k then the value of k is

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+…+C_(n)x^(n), Sigma_(r=0)^(n)((r+1)^(2))C_(r)=2^(n-2)f(n) and if the roots of the equation f(x) = 0 are alpha and beta , then the value of alpha^(2)+beta^(2) is equal to (where C_(r) denotes .^(n)C_(r) )

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+….+C_(n)x^(n) , then sumsum_(0lerltslen)(r+s)C_(r)C_(s) is equal to :

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+….+C_(n)x^(n) , then the value of sumsum_(0lerltslen)(r+s)(C_(r)+C_(s)) is :

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+….+C_(n)x^(n) , then the value of sumsum_(0lerltslen)(C_(r)+C_(s))^(2) is :

NTA MOCK TESTS-NTA JEE MOCK TEST 40-MATHEMATICS
  1. If f(x)={{:(x^(p+1)cos.(1)/(x)":", x ne 0),(0":", x=0):} then at x = ...

    Text Solution

    |

  2. The sum of the roots of the equation |x^(2)-x-6|=x+2 is

    Text Solution

    |

  3. The sum (upto two decimal places) of the infinite series (7)/(17)+(77)...

    Text Solution

    |

  4. The value of lim(nrarroo)(cos x cos .(x)/(2)cos.(x)/(4)..cos .(x)/(2^(...

    Text Solution

    |

  5. Two friends A and B have equal number of sons. There are 3 cinema tick...

    Text Solution

    |

  6. If arg ((z-(10+6t))/(z-(4+2i)))=(pi)/(5) (where z is a complex number)...

    Text Solution

    |

  7. If (1+x)^(n)=C(0)+C(1)x+C(2)x^(2)+… and +C(n)x^(n) Sigma(r=0)^(50)(C...

    Text Solution

    |

  8. The maximum slope of the curve y=-x^(3)+3x^(2)-4x+9 is

    Text Solution

    |

  9. The value of the integral int("cosec"^(2)x-2019)/(cos^(2019)x)dx is eq...

    Text Solution

    |

  10. If int(0)^(oo)(sinx)/(x)dx=k, then the value of int(0)^(oo)(sin^(3)x)/...

    Text Solution

    |

  11. The equation of the locus of the foot of perpendicular drawn from (5, ...

    Text Solution

    |

  12. If {[(5,1,4),(7,6,2),(1,3,5)][(1,6,-7),(6,2,4),(-7,4,3)][(5,7,1),(1,6,...

    Text Solution

    |

  13. The lengths of the tangents from any point on the circle x^(2)+y^(2)+8...

    Text Solution

    |

  14. Let A and B are two non - singular matrices of order 3 such that |A|=3...

    Text Solution

    |

  15. The distance of the plane x+2y-z=2 from the point (2, -1, 3), measured...

    Text Solution

    |

  16. The number of the positive integral solutions (x,y, z) of the equation...

    Text Solution

    |

  17. If f(x)=cos^(-1)(x^((3)/(2))-sqrt(1-x-x^(2)+x^(3))),AA 0 le x le 1 the...

    Text Solution

    |

  18. If veca,vecb are vectors perpendicular to each other and |veca|=2, |ve...

    Text Solution

    |

  19. If the order of the differential equation of the family of circle touc...

    Text Solution

    |

  20. If the area bounded by the curve y+x^(2)=8x and the line y=12 is K sq....

    Text Solution

    |