Home
Class 12
MATHS
If f(x) = tan^(-1)((2^x)/(1 + 2^(2x + 1)...

If `f(x) = tan^(-1)((2^x)/(1 + 2^(2x + 1)))`, then `sum_(r = 0)^(9) f^(r )` is

A

`tan^(-1) (1024)`

B

`tan^(-1)((1023)/(1024))`

C

`tan^(-1)((1023)/(1025))`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the summation of the function \( f(x) = \tan^{-1}\left(\frac{2^x}{1 + 2^{2x + 1}}\right) \) from \( r = 0 \) to \( r = 9 \). ### Step 1: Rewrite the function We start with the function: \[ f(x) = \tan^{-1}\left(\frac{2^x}{1 + 2^{2x + 1}}\right) \] We can rewrite the denominator: \[ 1 + 2^{2x + 1} = 1 + 2 \cdot 2^{2x} = 1 + 2^{2x} \cdot 2 \] Thus, we have: \[ f(x) = \tan^{-1}\left(\frac{2^x}{1 + 2 \cdot 2^{2x}}\right) \] ### Step 2: Simplify the expression Notice that: \[ f(x) = \tan^{-1}\left(\frac{2^x}{1 + 2^{2x + 1}}\right) = \tan^{-1}\left(\frac{2^x}{1 + 2^{2x} \cdot 2}\right) \] This can be simplified further: \[ = \tan^{-1}\left(\frac{2^x}{2^{2x} + 1}\right) \] ### Step 3: Use the identity for the tangent inverse Using the identity: \[ \tan^{-1}(a) - \tan^{-1}(b) = \tan^{-1}\left(\frac{a - b}{1 + ab}\right) \] we can express \( f(x) \) in terms of two arctangents: \[ f(x) = \tan^{-1}(2^x + 1) - \tan^{-1}(2^x) \] ### Step 4: Set up the summation Now, we need to evaluate: \[ \sum_{r=0}^{9} f(r) = \sum_{r=0}^{9} \left( \tan^{-1}(2^r + 1) - \tan^{-1}(2^r) \right) \] This summation can be rewritten using the properties of summation: \[ = \left( \tan^{-1}(2^0 + 1) - \tan^{-1}(2^0) \right) + \left( \tan^{-1}(2^1 + 1) - \tan^{-1}(2^1) \right) + \ldots + \left( \tan^{-1}(2^9 + 1) - \tan^{-1}(2^9) \right) \] ### Step 5: Observe the cancellation Notice that this is a telescoping series. Most terms will cancel out: \[ = \tan^{-1}(2^{10} + 1) - \tan^{-1}(2^0) \] Calculating the values: \[ = \tan^{-1}(1024 + 1) - \tan^{-1}(1) = \tan^{-1}(1025) - \frac{\pi}{4} \] ### Step 6: Final evaluation The final expression can be simplified further, but for the purpose of the problem, we can state: \[ \sum_{r=0}^{9} f(r) = \tan^{-1}(1025) - \frac{\pi}{4} \] ### Conclusion Thus, the result of the summation is: \[ \sum_{r=0}^{9} f(r) = \tan^{-1}(1025) - \frac{\pi}{4} \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 40

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 42

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If f(x)=tan^(-1) ((2x)/(1-x^(2))), x in R "then "f'(x) is given by

f(x)=2x-tan^(-1)x-ln(x+sqrt(1+x^(2)));x in R then

If f:R to R satisfies f(x+y)=f(x)+f(y), for all x, y in R and f(1)=7, then sum_(r=1)^(n)f( r) is

If xepsilon(0,1) and f(x)=sec{tan^(-1)((sin(cos^(-1)x)+cos(sin^(-1)x))/(cos(cos^(-1)x)=sin(sin^(-1)x)))} , then sum_(r=2)^(10)f(1/r) is

If f ( x) = Sigma_(r=1)^(n) tan^(-1) ( 1/(x^(2) + ( 2r -1) x + (r^(2) - r + 1)))" , then " | lim_(n to oo) f'(0)| is

If f(x)=inte^(x)(tan^(-1)x+(2x)/((1+x^(2))^(2)))dx,f(0)=0 then the value of f(1) is

If quad f(x)=lim_(n rarr oo)sum_(r=0)^(n)(tan((x)/(2^(r+1)))+tan^(3)((x)/(2^(r+1))))/(1-tan^(2)((x)/(2^(r+1)))) then lim_(x rarr0)(f(x))/(x) is

If f:R rarr R satisfies f(x+y)=f(x)+f(y), for all x,y in R and f(1)=2 then sum_(r=1)^(7)f(1)

sum_(r=1)^9 tan^-1(1/(2r^2)) =

NTA MOCK TESTS-NTA JEE MOCK TEST 41-MATHEMATICS
  1. (1 2/3)^2 + (2 1/3)^2 + 3^2 + (3 2/3)^2 + ….to 10 terms , the sum is ...

    Text Solution

    |

  2. For a complex number Z, if all the roots of the equation Z^3 + aZ^2 + ...

    Text Solution

    |

  3. If A ,B ,C ,D are four distinct point in space such that A B is not...

    Text Solution

    |

  4. Let a random variable X have a binomial distribution with mean 8 and v...

    Text Solution

    |

  5. A tangent drawn to the hyperbola (x^2)/(a^2) - (y^2)/(b^2) = 1 at P(a ...

    Text Solution

    |

  6. If f(x) = tan^(-1)((2^x)/(1 + 2^(2x + 1))), then sum(r = 0)^(9) f^(r )...

    Text Solution

    |

  7. Let A(n) = int tan^(n) xdx, AA n in N. If A(10) + A(12) = (tan^(m)x)/(...

    Text Solution

    |

  8. Let f(x) = sin^(3)x - 3 sinx + 6, AA x The in (0, pi).number of local ...

    Text Solution

    |

  9. The angle between the chords of the circle x^2 + y^2 = 100, which pass...

    Text Solution

    |

  10. If alpha and beta are the roots of the equation, [1,5][(1,3),(-4,7)]^(...

    Text Solution

    |

  11. If the equal sides AB and AC (each equal to 5 units) of a right-angled...

    Text Solution

    |

  12. If (2 sin alpha)/(1 + cos alpha + sin alpha) = 3/4, then the value of ...

    Text Solution

    |

  13. The intercepts made on the x, y and z axes, by the plane which bisects...

    Text Solution

    |

  14. The value of lim(x to (pi)/4) (sin 2x )^(sec^2x) is equal to

    Text Solution

    |

  15. If a, b and c are distinct positive real numbers such that Delta(1) = ...

    Text Solution

    |

  16. If lim(x to 0) (x(1 + a cos x)-b sinx)/(x^3) = 1, then the value of ab...

    Text Solution

    |

  17. If the solution of the differential equation x^2dy + 2xy dx = sin x dx...

    Text Solution

    |

  18. If the normals at two points P and Q of a parabola y^2 = 4x intersect ...

    Text Solution

    |

  19. The coefficient of t^50 in (1+t)^41 (1-t+t^2)^40 is equal to

    Text Solution

    |

  20. Let f : R to R is a function defined as f(x) where = {(|x-[x]| ,:[x] "...

    Text Solution

    |