Home
Class 12
MATHS
Let f(x) = sin^(3)x - 3 sinx + 6, AA x T...

Let `f(x) = sin^(3)x - 3 sinx + 6, AA x` The `in (0, pi)`.number of local maximum/maxima of the function f(x) is

A

0

B

1

C

2

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To find the number of local maxima of the function \( f(x) = \sin^3 x - 3 \sin x + 6 \) in the interval \( (0, \pi) \), we will follow these steps: ### Step 1: Find the derivative of the function We start by differentiating \( f(x) \): \[ f'(x) = \frac{d}{dx}(\sin^3 x) - \frac{d}{dx}(3 \sin x) + \frac{d}{dx}(6) \] Using the chain rule and the derivative of sine: \[ f'(x) = 3 \sin^2 x \cos x - 3 \cos x \] This simplifies to: \[ f'(x) = 3 \cos x (\sin^2 x - 1) \] ### Step 2: Set the derivative equal to zero To find critical points, we set \( f'(x) = 0 \): \[ 3 \cos x (\sin^2 x - 1) = 0 \] This gives us two cases to consider: 1. \( 3 \cos x = 0 \) 2. \( \sin^2 x - 1 = 0 \) ### Step 3: Solve for critical points **Case 1:** \( 3 \cos x = 0 \) \[ \cos x = 0 \implies x = \frac{\pi}{2} \] **Case 2:** \( \sin^2 x - 1 = 0 \) \[ \sin^2 x = 1 \implies \sin x = \pm 1 \] In the interval \( (0, \pi) \), \( \sin x = 1 \) gives us: \[ x = \frac{\pi}{2} \] The solution \( \sin x = -1 \) does not provide any valid solutions in \( (0, \pi) \). ### Step 4: Determine the nature of the critical point We have found a critical point at \( x = \frac{\pi}{2} \). To determine whether this point is a local maximum or minimum, we can use the first derivative test. We will check the sign of \( f'(x) \) around \( x = \frac{\pi}{2} \): - For \( x < \frac{\pi}{2} \) (e.g., \( x = \frac{\pi}{4} \)): \[ f'(\frac{\pi}{4}) = 3 \cos(\frac{\pi}{4})(\sin^2(\frac{\pi}{4}) - 1) = 3 \cdot \frac{\sqrt{2}}{2} \cdot (1 - 1) = 0 \quad (\text{not useful}) \] Instead, we can check \( x = \frac{\pi}{3} \): \[ f'(\frac{\pi}{3}) = 3 \cos(\frac{\pi}{3})(\sin^2(\frac{\pi}{3}) - 1) = 3 \cdot \frac{1}{2} \cdot \left(\left(\frac{\sqrt{3}}{2}\right)^2 - 1\right) < 0 \quad (\text{negative}) \] - For \( x > \frac{\pi}{2} \) (e.g., \( x = \frac{2\pi}{3} \)): \[ f'(\frac{2\pi}{3}) = 3 \cos(\frac{2\pi}{3})(\sin^2(\frac{2\pi}{3}) - 1) = 3 \cdot -\frac{1}{2} \cdot \left(\left(\frac{\sqrt{3}}{2}\right)^2 - 1\right) > 0 \quad (\text{positive}) \] ### Conclusion Since \( f'(x) \) changes from negative to positive at \( x = \frac{\pi}{2} \), this indicates that \( x = \frac{\pi}{2} \) is a local minimum, not a maximum. Thus, the number of local maxima of the function \( f(x) \) in the interval \( (0, \pi) \) is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 40

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 42

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

Then number of local maxima of the function f (x) = x - sin x is :

The maximum value of the function f(x)=sin x;[0,Pi] is

Find e local maximum and local minima,of the function f(x)=sin x-cos x,0

Find the local maxima and minima of the function f(x)=x^(3)-2x^(2)+x+6 .

If f(x)=2sin^(3)x-3sin^(2)x+12sin x+5AA x in(0,pi/2) then

The points of local maxima or local minima of the function f(x) = x^(3) + x^(2) + x + 1 are:

Find the local maxima and minima of the function f(x)=2x^(3)-21x^(2)+36x-20 .

Find the points of local maxima and local minima of the function f(x)=2x^(3)-3x^(2)-12x+8 .

Consider the function f(x)=(x-1)^(2)(x+1)(x-2)^(3). What is the number of points of local minima of the function f(x)? What is the number of points of local maxima of the function f(x)?

NTA MOCK TESTS-NTA JEE MOCK TEST 41-MATHEMATICS
  1. (1 2/3)^2 + (2 1/3)^2 + 3^2 + (3 2/3)^2 + ….to 10 terms , the sum is ...

    Text Solution

    |

  2. For a complex number Z, if all the roots of the equation Z^3 + aZ^2 + ...

    Text Solution

    |

  3. If A ,B ,C ,D are four distinct point in space such that A B is not...

    Text Solution

    |

  4. Let a random variable X have a binomial distribution with mean 8 and v...

    Text Solution

    |

  5. A tangent drawn to the hyperbola (x^2)/(a^2) - (y^2)/(b^2) = 1 at P(a ...

    Text Solution

    |

  6. If f(x) = tan^(-1)((2^x)/(1 + 2^(2x + 1))), then sum(r = 0)^(9) f^(r )...

    Text Solution

    |

  7. Let A(n) = int tan^(n) xdx, AA n in N. If A(10) + A(12) = (tan^(m)x)/(...

    Text Solution

    |

  8. Let f(x) = sin^(3)x - 3 sinx + 6, AA x The in (0, pi).number of local ...

    Text Solution

    |

  9. The angle between the chords of the circle x^2 + y^2 = 100, which pass...

    Text Solution

    |

  10. If alpha and beta are the roots of the equation, [1,5][(1,3),(-4,7)]^(...

    Text Solution

    |

  11. If the equal sides AB and AC (each equal to 5 units) of a right-angled...

    Text Solution

    |

  12. If (2 sin alpha)/(1 + cos alpha + sin alpha) = 3/4, then the value of ...

    Text Solution

    |

  13. The intercepts made on the x, y and z axes, by the plane which bisects...

    Text Solution

    |

  14. The value of lim(x to (pi)/4) (sin 2x )^(sec^2x) is equal to

    Text Solution

    |

  15. If a, b and c are distinct positive real numbers such that Delta(1) = ...

    Text Solution

    |

  16. If lim(x to 0) (x(1 + a cos x)-b sinx)/(x^3) = 1, then the value of ab...

    Text Solution

    |

  17. If the solution of the differential equation x^2dy + 2xy dx = sin x dx...

    Text Solution

    |

  18. If the normals at two points P and Q of a parabola y^2 = 4x intersect ...

    Text Solution

    |

  19. The coefficient of t^50 in (1+t)^41 (1-t+t^2)^40 is equal to

    Text Solution

    |

  20. Let f : R to R is a function defined as f(x) where = {(|x-[x]| ,:[x] "...

    Text Solution

    |