Home
Class 12
MATHS
If lim(x to 0) (x(1 + a cos x)-b sinx)/(...

If `lim_(x to 0) (x(1 + a cos x)-b sinx)/(x^3) = 1`, then the value of ab is euqal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem given by \[ \lim_{x \to 0} \frac{x(1 + a \cos x) - b \sin x}{x^3} = 1, \] we will use Taylor series expansions for \(\cos x\) and \(\sin x\) around \(x = 0\). ### Step 1: Write the Taylor series expansions The Taylor series expansions around \(x = 0\) are: - \(\cos x \approx 1 - \frac{x^2}{2} + \frac{x^4}{24} + O(x^6)\) - \(\sin x \approx x - \frac{x^3}{6} + O(x^5)\) ### Step 2: Substitute the expansions into the limit Substituting these expansions into the limit expression, we have: \[ \cos x \approx 1 - \frac{x^2}{2}, \quad \sin x \approx x - \frac{x^3}{6}. \] Thus, \[ 1 + a \cos x \approx 1 + a \left(1 - \frac{x^2}{2}\right) = 1 + a - \frac{a x^2}{2}. \] Now substituting into the original expression: \[ x(1 + a \cos x) - b \sin x \approx x\left(1 + a - \frac{a x^2}{2}\right) - b\left(x - \frac{x^3}{6}\right). \] ### Step 3: Simplify the expression Expanding this gives: \[ x(1 + a) - \frac{a x^3}{2} - bx + \frac{b x^3}{6}. \] Combining like terms, we get: \[ (1 + a - b)x + \left(-\frac{a}{2} + \frac{b}{6}\right)x^3. \] ### Step 4: Divide by \(x^3\) and take the limit Now we divide the entire expression by \(x^3\): \[ \frac{(1 + a - b)x + \left(-\frac{a}{2} + \frac{b}{6}\right)x^3}{x^3} = \frac{(1 + a - b)}{x^2} + \left(-\frac{a}{2} + \frac{b}{6}\right). \] As \(x \to 0\), the term \(\frac{(1 + a - b)}{x^2}\) will approach infinity unless \(1 + a - b = 0\). Therefore, we must have: \[ 1 + a - b = 0 \quad \text{(Equation 1)}. \] ### Step 5: Set the remaining term equal to 1 For the limit to equal 1, we need: \[ -\frac{a}{2} + \frac{b}{6} = 1 \quad \text{(Equation 2)}. \] ### Step 6: Solve the equations From Equation 1, we can express \(b\) in terms of \(a\): \[ b = 1 + a. \] Substituting this into Equation 2: \[ -\frac{a}{2} + \frac{1 + a}{6} = 1. \] Multiplying through by 6 to eliminate the fractions: \[ -3a + 1 + a = 6 \implies -2a + 1 = 6 \implies -2a = 5 \implies a = -\frac{5}{2}. \] Now substituting \(a\) back into Equation 1 to find \(b\): \[ b = 1 - \frac{5}{2} = -\frac{3}{2}. \] ### Step 7: Calculate \(ab\) Now we can find \(ab\): \[ ab = \left(-\frac{5}{2}\right) \left(-\frac{3}{2}\right) = \frac{15}{4}. \] Thus, the value of \(ab\) is \[ \boxed{\frac{15}{4}}. \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 40

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 42

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(x(1+a cos x)-b sin x)/(x^(3))=1 then

Let f(x) be a function such that lim_(x rarr0)(f(x))/(x)=1 and lim_(x rarr0)(x(1+a cos x)-b sin x)/({f(x)^(3)})=1 ,then b-3a is equals to

f(x) is the function such that underset( x rarr 0 ) ("Lim") (f(x))/( x ) = 1 . If underset( x rarr 0 ) ( "Lim") ( x ( 1+ a cos x )-b sinx ) /( (f(x))^(3))= 1 , then find the value of a and b.

lim_(xrarr0) (ax+x cos x)/(b sinx)

lim_(x to 0) (cos 2x-1)/(cos x-1)

If lim_(x to 0) (cos x + a^(3)sin(b^(6)x))^(1//x)=e^(512) , then the value of ab^(2) is equal to

lim_(x to 0) (x^3 sin(1/x))/sinx

If L=lim_(xto0) (e^(-x^(2)//2)-cosx)/(x^(3)sinx) , then the value of 1//(3L) is ________.

NTA MOCK TESTS-NTA JEE MOCK TEST 41-MATHEMATICS
  1. (1 2/3)^2 + (2 1/3)^2 + 3^2 + (3 2/3)^2 + ….to 10 terms , the sum is ...

    Text Solution

    |

  2. For a complex number Z, if all the roots of the equation Z^3 + aZ^2 + ...

    Text Solution

    |

  3. If A ,B ,C ,D are four distinct point in space such that A B is not...

    Text Solution

    |

  4. Let a random variable X have a binomial distribution with mean 8 and v...

    Text Solution

    |

  5. A tangent drawn to the hyperbola (x^2)/(a^2) - (y^2)/(b^2) = 1 at P(a ...

    Text Solution

    |

  6. If f(x) = tan^(-1)((2^x)/(1 + 2^(2x + 1))), then sum(r = 0)^(9) f^(r )...

    Text Solution

    |

  7. Let A(n) = int tan^(n) xdx, AA n in N. If A(10) + A(12) = (tan^(m)x)/(...

    Text Solution

    |

  8. Let f(x) = sin^(3)x - 3 sinx + 6, AA x The in (0, pi).number of local ...

    Text Solution

    |

  9. The angle between the chords of the circle x^2 + y^2 = 100, which pass...

    Text Solution

    |

  10. If alpha and beta are the roots of the equation, [1,5][(1,3),(-4,7)]^(...

    Text Solution

    |

  11. If the equal sides AB and AC (each equal to 5 units) of a right-angled...

    Text Solution

    |

  12. If (2 sin alpha)/(1 + cos alpha + sin alpha) = 3/4, then the value of ...

    Text Solution

    |

  13. The intercepts made on the x, y and z axes, by the plane which bisects...

    Text Solution

    |

  14. The value of lim(x to (pi)/4) (sin 2x )^(sec^2x) is equal to

    Text Solution

    |

  15. If a, b and c are distinct positive real numbers such that Delta(1) = ...

    Text Solution

    |

  16. If lim(x to 0) (x(1 + a cos x)-b sinx)/(x^3) = 1, then the value of ab...

    Text Solution

    |

  17. If the solution of the differential equation x^2dy + 2xy dx = sin x dx...

    Text Solution

    |

  18. If the normals at two points P and Q of a parabola y^2 = 4x intersect ...

    Text Solution

    |

  19. The coefficient of t^50 in (1+t)^41 (1-t+t^2)^40 is equal to

    Text Solution

    |

  20. Let f : R to R is a function defined as f(x) where = {(|x-[x]| ,:[x] "...

    Text Solution

    |