Home
Class 12
MATHS
Let f : R to R is a function defined as ...

Let `f : R to R` is a function defined as `f(x)` where `= {(|x-[x]| ,:[x] "is odd"),(|x - [x + 1]| ,:[x] "is even"):}`
[.] denotes the greatest integer function, then `int_(-2)^(4) dx` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( f(x) \) defined as follows: \[ f(x) = \begin{cases} |x - [x]| & \text{if } [x] \text{ is odd} \\ |x - [x + 1]| & \text{if } [x] \text{ is even} \end{cases} \] Where \([x]\) denotes the greatest integer function (also known as the floor function). We need to compute the integral: \[ \int_{-2}^{4} f(x) \, dx \] ### Step 1: Understand the Function \( f(x) \) 1. **When \([x]\) is odd**: The function gives the fractional part of \( x \), which is \( |x - [x]| \). 2. **When \([x]\) is even**: The function gives \( |x - [x + 1]| \), which is equivalent to \( 1 - |x - [x]| \) since \([x + 1] = [x] + 1\). ### Step 2: Determine the Intervals Next, we determine the intervals for \( x \) from \(-2\) to \(4\) and find the values of \([x]\): - For \( -2 \leq x < -1 \): \([x] = -2\) (even) - For \( -1 \leq x < 0 \): \([x] = -1\) (odd) - For \( 0 \leq x < 1 \): \([x] = 0\) (even) - For \( 1 \leq x < 2 \): \([x] = 1\) (odd) - For \( 2 \leq x < 3 \): \([x] = 2\) (even) - For \( 3 \leq x < 4 \): \([x] = 3\) (odd) ### Step 3: Evaluate \( f(x) \) on Each Interval Now we compute \( f(x) \) on each interval: 1. **Interval \([-2, -1)\)**: - \([x] = -2\) (even), so \( f(x) = 1 - |x - (-2)| = 1 - (x + 2) = -x - 1 \) 2. **Interval \([-1, 0)\)**: - \([x] = -1\) (odd), so \( f(x) = |x - (-1)| = x + 1 \) 3. **Interval \([0, 1)\)**: - \([x] = 0\) (even), so \( f(x) = 1 - |x - 0| = 1 - x \) 4. **Interval \([1, 2)\)**: - \([x] = 1\) (odd), so \( f(x) = |x - 1| = x - 1 \) 5. **Interval \([2, 3)\)**: - \([x] = 2\) (even), so \( f(x) = 1 - |x - 2| = 1 - (x - 2) = 3 - x \) 6. **Interval \([3, 4)\)**: - \([x] = 3\) (odd), so \( f(x) = |x - 3| = x - 3 \) ### Step 4: Set Up the Integral Now we can set up the integral by breaking it into parts: \[ \int_{-2}^{4} f(x) \, dx = \int_{-2}^{-1} (-x - 1) \, dx + \int_{-1}^{0} (x + 1) \, dx + \int_{0}^{1} (1 - x) \, dx + \int_{1}^{2} (x - 1) \, dx + \int_{2}^{3} (3 - x) \, dx + \int_{3}^{4} (x - 3) \, dx \] ### Step 5: Calculate Each Integral 1. **For \([-2, -1)\)**: \[ \int_{-2}^{-1} (-x - 1) \, dx = \left[-\frac{x^2}{2} - x\right]_{-2}^{-1} = \left[-\frac{(-1)^2}{2} - (-1)\right] - \left[-\frac{(-2)^2}{2} - (-2)\right] = \left[-\frac{1}{2} + 1\right] - \left[-2 + 2\right] = \frac{1}{2} \] 2. **For \([-1, 0)\)**: \[ \int_{-1}^{0} (x + 1) \, dx = \left[\frac{x^2}{2} + x\right]_{-1}^{0} = \left[0\right] - \left[\frac{(-1)^2}{2} - 1\right] = 0 - \left[\frac{1}{2} - 1\right] = \frac{1}{2} \] 3. **For \([0, 1)\)**: \[ \int_{0}^{1} (1 - x) \, dx = \left[x - \frac{x^2}{2}\right]_{0}^{1} = \left[1 - \frac{1}{2}\right] - [0] = \frac{1}{2} \] 4. **For \([1, 2)\)**: \[ \int_{1}^{2} (x - 1) \, dx = \left[\frac{x^2}{2} - x\right]_{1}^{2} = \left[2 - 2\right] - \left[\frac{1}{2} - 1\right] = 0 + \frac{1}{2} = \frac{1}{2} \] 5. **For \([2, 3)\)**: \[ \int_{2}^{3} (3 - x) \, dx = \left[3x - \frac{x^2}{2}\right]_{2}^{3} = \left[9 - \frac{9}{2}\right] - \left[6 - 2\right] = \left[\frac{9}{2} - 6\right] = \frac{9}{2} - \frac{12}{2} = -\frac{3}{2} \] 6. **For \([3, 4)\)**: \[ \int_{3}^{4} (x - 3) \, dx = \left[\frac{x^2}{2} - 3x\right]_{3}^{4} = \left[8 - 12\right] - \left[\frac{9}{2} - 9\right] = -4 + \frac{9}{2} - 9 = -4 + \frac{9}{2} + \frac{18}{2} = \frac{9}{2} - 4 = \frac{1}{2} \] ### Step 6: Sum All the Areas Now, we sum all the areas: \[ \int_{-2}^{4} f(x) \, dx = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} - \frac{3}{2} + \frac{1}{2} = 3 \] ### Final Answer Thus, the value of the integral is: \[ \int_{-2}^{4} f(x) \, dx = 3 \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 40

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 42

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If f(x)=[2x], where [.] denotes the greatest integer function,then

If f(x) = [x] - [x/4], x in R where [x] denotes the greatest integer function, then

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then

If [.] denotes the greatest integer function, then f(x)=[x]+[x+(1)/(2)]

Let f : R->R be given by f(x) = {|x-[x]|, when [x] is odd and |x-[x]-1| , when [x] is even ,where [.] denotes the greatest integer function , then int_-2^4 f(x) dx is equal to

Let f(x) = [x]^(2) + [x+1] - 3 , where [.] denotes the greatest integer function. Then

If f(x)=(x-[x])/(1-[x]+x), where [.] denotes the greatest integer function,then f(x)in:

NTA MOCK TESTS-NTA JEE MOCK TEST 41-MATHEMATICS
  1. (1 2/3)^2 + (2 1/3)^2 + 3^2 + (3 2/3)^2 + ….to 10 terms , the sum is ...

    Text Solution

    |

  2. For a complex number Z, if all the roots of the equation Z^3 + aZ^2 + ...

    Text Solution

    |

  3. If A ,B ,C ,D are four distinct point in space such that A B is not...

    Text Solution

    |

  4. Let a random variable X have a binomial distribution with mean 8 and v...

    Text Solution

    |

  5. A tangent drawn to the hyperbola (x^2)/(a^2) - (y^2)/(b^2) = 1 at P(a ...

    Text Solution

    |

  6. If f(x) = tan^(-1)((2^x)/(1 + 2^(2x + 1))), then sum(r = 0)^(9) f^(r )...

    Text Solution

    |

  7. Let A(n) = int tan^(n) xdx, AA n in N. If A(10) + A(12) = (tan^(m)x)/(...

    Text Solution

    |

  8. Let f(x) = sin^(3)x - 3 sinx + 6, AA x The in (0, pi).number of local ...

    Text Solution

    |

  9. The angle between the chords of the circle x^2 + y^2 = 100, which pass...

    Text Solution

    |

  10. If alpha and beta are the roots of the equation, [1,5][(1,3),(-4,7)]^(...

    Text Solution

    |

  11. If the equal sides AB and AC (each equal to 5 units) of a right-angled...

    Text Solution

    |

  12. If (2 sin alpha)/(1 + cos alpha + sin alpha) = 3/4, then the value of ...

    Text Solution

    |

  13. The intercepts made on the x, y and z axes, by the plane which bisects...

    Text Solution

    |

  14. The value of lim(x to (pi)/4) (sin 2x )^(sec^2x) is equal to

    Text Solution

    |

  15. If a, b and c are distinct positive real numbers such that Delta(1) = ...

    Text Solution

    |

  16. If lim(x to 0) (x(1 + a cos x)-b sinx)/(x^3) = 1, then the value of ab...

    Text Solution

    |

  17. If the solution of the differential equation x^2dy + 2xy dx = sin x dx...

    Text Solution

    |

  18. If the normals at two points P and Q of a parabola y^2 = 4x intersect ...

    Text Solution

    |

  19. The coefficient of t^50 in (1+t)^41 (1-t+t^2)^40 is equal to

    Text Solution

    |

  20. Let f : R to R is a function defined as f(x) where = {(|x-[x]| ,:[x] "...

    Text Solution

    |