Home
Class 12
MATHS
Let vecalpha=(1)/(a)hati+(4)/(b)hatj+bha...

Let `vecalpha=(1)/(a)hati+(4)/(b)hatj+bhatk` and `vecbeta=bhati+ahatj+(1)/(b)hatk(Aaa, b gt 0)`, then the maximum value of `(12)/(6+vecalpha.vecbeta))` is

A

`(12)/(11)`

B

2

C

1

D

`(10)/(9)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the maximum value of the expression \(\frac{12}{6 + \vec{\alpha} \cdot \vec{\beta}}\), where \(\vec{\alpha}\) and \(\vec{\beta}\) are given vectors. ### Step-by-step Solution: 1. **Define the Vectors**: \[ \vec{\alpha} = \frac{1}{a} \hat{i} + \frac{4}{b} \hat{j} + b \hat{k} \] \[ \vec{\beta} = b \hat{i} + a \hat{j} + \frac{1}{b} \hat{k} \] 2. **Calculate the Dot Product \(\vec{\alpha} \cdot \vec{\beta}\)**: The dot product is calculated as follows: \[ \vec{\alpha} \cdot \vec{\beta} = \left(\frac{1}{a}\hat{i} + \frac{4}{b}\hat{j} + b\hat{k}\right) \cdot \left(b\hat{i} + a\hat{j} + \frac{1}{b}\hat{k}\right) \] \[ = \frac{1}{a} \cdot b + \frac{4}{b} \cdot a + b \cdot \frac{1}{b} \] \[ = \frac{b}{a} + \frac{4a}{b} + 1 \] 3. **Simplify the Expression**: Let \(x = \frac{b}{a}\) and \(y = \frac{4a}{b}\). Then we can rewrite: \[ \vec{\alpha} \cdot \vec{\beta} = x + y + 1 \] 4. **Apply the AM-GM Inequality**: By the AM-GM inequality: \[ \frac{x + y}{2} \geq \sqrt{xy} \] Therefore: \[ x + y \geq 2\sqrt{xy} \] Now substituting \(y = \frac{4a}{b} = \frac{4}{x}\): \[ xy = x \cdot \frac{4}{x} = 4 \] Thus: \[ x + \frac{4}{x} \geq 4 \] 5. **Find the Minimum Value of \(\vec{\alpha} \cdot \vec{\beta}\)**: Hence, we have: \[ \vec{\alpha} \cdot \vec{\beta} \geq 4 + 1 = 5 \] 6. **Substitute Back into the Original Expression**: Now substituting this back into our expression: \[ 6 + \vec{\alpha} \cdot \vec{\beta} \geq 6 + 5 = 11 \] 7. **Calculate the Maximum Value**: Thus: \[ \frac{12}{6 + \vec{\alpha} \cdot \vec{\beta}} \leq \frac{12}{11} \] Therefore, the maximum value of the expression is: \[ \frac{12}{11} \] ### Final Answer: The maximum value of \(\frac{12}{6 + \vec{\alpha} \cdot \vec{\beta}}\) is \(\frac{12}{11}\).
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 41

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 43

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

Let a,bgt0 and alpha=(hati)/(a)+(4hatj)/(b)+bhatk and beta=bhati+ahattj+(1)/(b)hatk , then the maximum value of (10)/(5+alpha*beta) is

Let veca = a_(1)hati+3hatj+a_(3)hatk and vecb = 2hati + b_(2)hatj + hatk . If veca = vecb , find the values of a_(1),b_(2) and a_(3) .

Let vecalpha = 3hati + hatj and beta= 2hati - hatj + 3hatk . If vecbeta = vecbeta_(1) - vecbeta_(2) , where vecbeta_(1) is parallel to vecalpha and vecbeta_(2) is perpendicular to vecalpha , then vecbeta_(1) xx vecbeta_(2) is equal to:

If a=2hati+2hatj-8hatk and b=hati+3hatj-4hatk , then the magnitude of a+b is equal to

If veca=3hati+4hatj+5hatk and vecbeta =2hati+hatj-4hatk , then express vecbeta=vecbeta_1+vecbeta_2 such that vecbeta_1||vecalpha and vecbeta_2botvecalpha .

If the vectors vecalpha = a hati + hatj + hatk, vecbeta = hati + b hatj + hatk and vec gamma = hati + hatj + c hatk are coplanar, then prove that (1)/(1-a ) +(1)/(1-b)+ (1)/(1-c)=1 where a ne 1, b ne 1 and c ne 1

NTA MOCK TESTS-NTA JEE MOCK TEST 42-MATHEMATICS
  1. The consecutive odd integers whose sum is 45^2 - 21^2 are

    Text Solution

    |

  2. For a complex number Z, if one root of the equation Z^(2)-aZ+a=0 is (1...

    Text Solution

    |

  3. Let vecalpha=(1)/(a)hati+(4)/(b)hatj+bhatk and vecbeta=bhati+ahatj+(1)...

    Text Solution

    |

  4. If 2 data sets having 10 and 20 observation have coefficients of varia...

    Text Solution

    |

  5. |[alpha]+[beta]+[gamma]|, where [.] denotes the integer function, is e...

    Text Solution

    |

  6. If 2, h(1), h(2),………,h(20)6 are in harmonic progression and 2, a(1),a(...

    Text Solution

    |

  7. In sinA and cosA are the roots of the equation 4x^(2)-3x+a=0, sinA+cos...

    Text Solution

    |

  8. The statement phArr q is not equivalent to

    Text Solution

    |

  9. The curve represented by x = 3 (cost + sint), y = 4(cost – sint), is

    Text Solution

    |

  10. The plane 4x+7y+4z+81=0 is rotated through a right angle about its lin...

    Text Solution

    |

  11. The lengths of the perpendiculars from the points (m^(2), 2m), (mn, m+...

    Text Solution

    |

  12. The value of int(0)^(oo)(dx)/(1+x^(4)) is equal to

    Text Solution

    |

  13. The coefficient of x^5 in the expansion of (1+x/(1!)+x^2/(2!)+x^3/(3...

    Text Solution

    |

  14. Which of the following equations of a line intercepts on the circle x^...

    Text Solution

    |

  15. The value of the integral inte^(x^(2)+(1)/(2))(2x^(2)-(1)/(x)+1)dx is ...

    Text Solution

    |

  16. If AneB, AB = BA and A^(2)=B^(2), then the value of the determinant of...

    Text Solution

    |

  17. The locus of the mid-point of the chords of the hyperbola x^(2)-y^(2)=...

    Text Solution

    |

  18. The area bounded by the curve y={x} with the x-axis from x=pi to x=3.8...

    Text Solution

    |

  19. Consider the function f(x)=tan^(-1){(3x-2)/(3+2x)}, AA x ge 0. If g(x)...

    Text Solution

    |

  20. If inte^(-(x^(2))/(2))dx=f(x) and the solution of the differential equ...

    Text Solution

    |