Home
Class 12
MATHS
In sinA and cosA are the roots of the eq...

In `sinA and cosA` are the roots of the equation `4x^(2)-3x+a=0, sinA+cosA+tanA+cotA+secA+"cosec "A=7 and 0 lt A lt (pi)/(2)`, then the value of a must be

A

`(7)/(25)`

B

`(25)/(7)`

C

`(28)/(25)`

D

`(25)/(28)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( a \) given that \( \sin A \) and \( \cos A \) are the roots of the equation \( 4x^2 - 3x + a = 0 \) and that \( \sin A + \cos A + \tan A + \cot A + \sec A + \csc A = 7 \). ### Step 1: Use Vieta's Formulas Since \( \sin A \) and \( \cos A \) are the roots of the quadratic equation \( 4x^2 - 3x + a = 0 \), we can apply Vieta's formulas. - The sum of the roots \( \sin A + \cos A = -\frac{B}{A} = \frac{3}{4} \). - The product of the roots \( \sin A \cdot \cos A = \frac{C}{A} = \frac{a}{4} \). ### Step 2: Express \( \tan A \), \( \cot A \), \( \sec A \), and \( \csc A \) We know the following relationships: - \( \tan A = \frac{\sin A}{\cos A} \) - \( \cot A = \frac{\cos A}{\sin A} \) - \( \sec A = \frac{1}{\cos A} \) - \( \csc A = \frac{1}{\sin A} \) ### Step 3: Substitute these into the equation The equation becomes: \[ \sin A + \cos A + \frac{\sin A}{\cos A} + \frac{\cos A}{\sin A} + \frac{1}{\cos A} + \frac{1}{\sin A} = 7 \] Let \( S = \sin A + \cos A \) and \( P = \sin A \cdot \cos A \). ### Step 4: Rewrite the equation Using \( S = \frac{3}{4} \) and \( P = \frac{a}{4} \): \[ S + \frac{S^2}{P} + \frac{1}{\cos A} + \frac{1}{\sin A} = 7 \] We can express \( \frac{1}{\cos A} + \frac{1}{\sin A} \) as: \[ \frac{1}{\cos A} + \frac{1}{\sin A} = \frac{\sin A + \cos A}{\sin A \cos A} = \frac{S}{P} \] Thus, the equation simplifies to: \[ S + \frac{S^2}{P} + \frac{S}{P} = 7 \] ### Step 5: Substitute \( S \) and \( P \) Substituting \( S = \frac{3}{4} \): \[ \frac{3}{4} + \frac{\left(\frac{3}{4}\right)^2}{\frac{a}{4}} + \frac{\frac{3}{4}}{\frac{a}{4}} = 7 \] This simplifies to: \[ \frac{3}{4} + \frac{\frac{9}{16}}{\frac{a}{4}} + \frac{\frac{3}{4}}{\frac{a}{4}} = 7 \] Multiplying through by \( 4a \) to eliminate the fractions: \[ 3a + \frac{9}{4} + 3 = 28a \] This leads to: \[ 3a + \frac{21}{4} = 28a \] Rearranging gives: \[ \frac{21}{4} = 28a - 3a \] \[ \frac{21}{4} = 25a \] ### Step 6: Solve for \( a \) Thus, \[ a = \frac{21}{4 \cdot 25} = \frac{21}{100} \] ### Final Answer The value of \( a \) must be \( \frac{21}{100} \).
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 41

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 43

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If 0 lt x lt (pi)/(2) , then ("sin x + cosec x") is

If sinA+cosA=sqrt(2), then the value of cos^(2) A is

If sinA=sinB and cosA=cosB , then prove that sin. (A-B)/(2)=0 .

Prove that : (sinA-cosA)(cotA +tanA)=secA-"cosec"A

If sinA=1/3 then cosA. cosecA+tanA.secA=

If sinA-cosA=(sqrt(3)-1)/(2) , then the value of sin A . cos A is

If sin x - cos x = 0, 0^(@) lt x lt 90^(@) then the value of ( sec x + cosec x)^(2) is:

Prove that: sinA(1+tanA)+cosA(1+cotA)= secA+"cosec"A

If sinA=-4/5 and pi lt A lt (3pi)/2 , find the value of (cosecA+cotA)/(secA-tanA)

If sinA=cosA,then find the value of sin 2A.

NTA MOCK TESTS-NTA JEE MOCK TEST 42-MATHEMATICS
  1. Let vecalpha=(1)/(a)hati+(4)/(b)hatj+bhatk and vecbeta=bhati+ahatj+(1)...

    Text Solution

    |

  2. If 2 data sets having 10 and 20 observation have coefficients of varia...

    Text Solution

    |

  3. |[alpha]+[beta]+[gamma]|, where [.] denotes the integer function, is e...

    Text Solution

    |

  4. If 2, h(1), h(2),………,h(20)6 are in harmonic progression and 2, a(1),a(...

    Text Solution

    |

  5. In sinA and cosA are the roots of the equation 4x^(2)-3x+a=0, sinA+cos...

    Text Solution

    |

  6. The statement phArr q is not equivalent to

    Text Solution

    |

  7. The curve represented by x = 3 (cost + sint), y = 4(cost – sint), is

    Text Solution

    |

  8. The plane 4x+7y+4z+81=0 is rotated through a right angle about its lin...

    Text Solution

    |

  9. The lengths of the perpendiculars from the points (m^(2), 2m), (mn, m+...

    Text Solution

    |

  10. The value of int(0)^(oo)(dx)/(1+x^(4)) is equal to

    Text Solution

    |

  11. The coefficient of x^5 in the expansion of (1+x/(1!)+x^2/(2!)+x^3/(3...

    Text Solution

    |

  12. Which of the following equations of a line intercepts on the circle x^...

    Text Solution

    |

  13. The value of the integral inte^(x^(2)+(1)/(2))(2x^(2)-(1)/(x)+1)dx is ...

    Text Solution

    |

  14. If AneB, AB = BA and A^(2)=B^(2), then the value of the determinant of...

    Text Solution

    |

  15. The locus of the mid-point of the chords of the hyperbola x^(2)-y^(2)=...

    Text Solution

    |

  16. The area bounded by the curve y={x} with the x-axis from x=pi to x=3.8...

    Text Solution

    |

  17. Consider the function f(x)=tan^(-1){(3x-2)/(3+2x)}, AA x ge 0. If g(x)...

    Text Solution

    |

  18. If inte^(-(x^(2))/(2))dx=f(x) and the solution of the differential equ...

    Text Solution

    |

  19. A subset of 5 elements is chosen from the set of first 15 natural numb...

    Text Solution

    |

  20. If a,b, c, lambda in N, then the least possible value of |(a^(2)+lambd...

    Text Solution

    |