Home
Class 12
MATHS
Consider the function f(x)=tan^(-1){(3x-...

Consider the function `f(x)=tan^(-1){(3x-2)/(3+2x)}, AA x ge 0.` If `g(x)` is the inverse function of `f(x)`, then the value of `g'((pi)/(4))` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( g'\left(\frac{\pi}{4}\right) \) where \( g(x) \) is the inverse function of \( f(x) = \tan^{-1}\left(\frac{3x-2}{3+2x}\right) \) for \( x \geq 0 \), we can follow these steps: ### Step 1: Find the derivative of \( f(x) \) We start with the function: \[ f(x) = \tan^{-1}\left(\frac{3x-2}{3+2x}\right) \] To find \( f'(x) \), we use the derivative of the arctangent function: \[ f'(x) = \frac{1}{1 + \left(\frac{3x-2}{3+2x}\right)^2} \cdot \frac{d}{dx}\left(\frac{3x-2}{3+2x}\right) \] ### Step 2: Differentiate the inner function Using the quotient rule for differentiation: \[ \frac{d}{dx}\left(\frac{3x-2}{3+2x}\right) = \frac{(3)(3+2x) - (3x-2)(2)}{(3+2x)^2} \] Simplifying this gives: \[ = \frac{9 + 6x - (6x - 4)}{(3+2x)^2} = \frac{9 + 6x - 6x + 4}{(3+2x)^2} = \frac{13}{(3+2x)^2} \] ### Step 3: Substitute back into the derivative of \( f(x) \) Now substituting back: \[ f'(x) = \frac{1}{1 + \left(\frac{3x-2}{3+2x}\right)^2} \cdot \frac{13}{(3+2x)^2} \] ### Step 4: Evaluate \( f'(x) \) at \( x = 5 \) Next, we need to find \( f(5) \): \[ f(5) = \tan^{-1}\left(\frac{3 \cdot 5 - 2}{3 + 2 \cdot 5}\right) = \tan^{-1}\left(\frac{15 - 2}{3 + 10}\right) = \tan^{-1}\left(\frac{13}{13}\right) = \tan^{-1}(1) = \frac{\pi}{4} \] Now we can find \( f'(5) \): \[ f'(5) = \frac{1}{1 + \left(\frac{3 \cdot 5 - 2}{3 + 2 \cdot 5}\right)^2} \cdot \frac{13}{(3 + 2 \cdot 5)^2} \] Calculating \( \left(\frac{13}{13}\right)^2 = 1 \): \[ f'(5) = \frac{1}{1 + 1} \cdot \frac{13}{(13)^2} = \frac{1}{2} \cdot \frac{13}{169} = \frac{13}{338} \] ### Step 5: Use the relationship between \( g' \) and \( f' \) Since \( g(x) \) is the inverse of \( f(x) \), we have: \[ g'\left(f(x)\right) = \frac{1}{f'(x)} \] Thus, \[ g'\left(\frac{\pi}{4}\right) = \frac{1}{f'(5)} = \frac{1}{\frac{13}{338}} = \frac{338}{13} \] ### Final Answer Therefore, the value of \( g'\left(\frac{\pi}{4}\right) \) is: \[ \boxed{26} \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 41

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 43

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If f(x)=x^(3)+3x+1 and g(x) is the inverse function of f(x), then the value of g'(5) is equal to

Consider a function f(x)=x^(x), AA x in [1, oo) . If g(x) is the inverse function of f(x) , then the value of g'(4) is equal to

If f(x)=2x+tan x and g(x) is the inverse of f(x) then value of g'((pi)/(2)+1) is

Let f(x)=x^(3)+3x+2 and g(x) is inverse function of f(x) then the value of g'(6) is

If g(x) is inverse function of f(x)=x^(3)+3x-3 then g'(1)=

If g(x) is the inverse function of f(x) and f'(x)=(1)/(1+x^(4)) , then g'(x) is

Let f(x)=x^(107)+x^(53)+7x+2 . If g(x) is inverse of function f(x) , then the value of f(g'(2)) is

g(x) is a inverse function of f.g(x)=x^(3)+e^((x)/(2)) then find the value of f'(x)

If f(x)=x^(3)+3x+4 and g is the inverse function of f(x), then the value of (d)/(dx)((g(x))/(g(g(x)))) at x = 4 equals

Let f(x)=log_(e)x+2x^(3)+3x^(5), where x>0 and g(x) is the inverse function of f(x) , then g'(5) is equal to:

NTA MOCK TESTS-NTA JEE MOCK TEST 42-MATHEMATICS
  1. Let vecalpha=(1)/(a)hati+(4)/(b)hatj+bhatk and vecbeta=bhati+ahatj+(1)...

    Text Solution

    |

  2. If 2 data sets having 10 and 20 observation have coefficients of varia...

    Text Solution

    |

  3. |[alpha]+[beta]+[gamma]|, where [.] denotes the integer function, is e...

    Text Solution

    |

  4. If 2, h(1), h(2),………,h(20)6 are in harmonic progression and 2, a(1),a(...

    Text Solution

    |

  5. In sinA and cosA are the roots of the equation 4x^(2)-3x+a=0, sinA+cos...

    Text Solution

    |

  6. The statement phArr q is not equivalent to

    Text Solution

    |

  7. The curve represented by x = 3 (cost + sint), y = 4(cost – sint), is

    Text Solution

    |

  8. The plane 4x+7y+4z+81=0 is rotated through a right angle about its lin...

    Text Solution

    |

  9. The lengths of the perpendiculars from the points (m^(2), 2m), (mn, m+...

    Text Solution

    |

  10. The value of int(0)^(oo)(dx)/(1+x^(4)) is equal to

    Text Solution

    |

  11. The coefficient of x^5 in the expansion of (1+x/(1!)+x^2/(2!)+x^3/(3...

    Text Solution

    |

  12. Which of the following equations of a line intercepts on the circle x^...

    Text Solution

    |

  13. The value of the integral inte^(x^(2)+(1)/(2))(2x^(2)-(1)/(x)+1)dx is ...

    Text Solution

    |

  14. If AneB, AB = BA and A^(2)=B^(2), then the value of the determinant of...

    Text Solution

    |

  15. The locus of the mid-point of the chords of the hyperbola x^(2)-y^(2)=...

    Text Solution

    |

  16. The area bounded by the curve y={x} with the x-axis from x=pi to x=3.8...

    Text Solution

    |

  17. Consider the function f(x)=tan^(-1){(3x-2)/(3+2x)}, AA x ge 0. If g(x)...

    Text Solution

    |

  18. If inte^(-(x^(2))/(2))dx=f(x) and the solution of the differential equ...

    Text Solution

    |

  19. A subset of 5 elements is chosen from the set of first 15 natural numb...

    Text Solution

    |

  20. If a,b, c, lambda in N, then the least possible value of |(a^(2)+lambd...

    Text Solution

    |