Home
Class 12
MATHS
If a,b, c, lambda in N, then the least p...

If `a,b, c, lambda in N`, then the least possible value of `|(a^(2)+lambda, ab,ac),(ba,b^(2)+lambda,bc),(ca, cb, c^(2)+lambda)|` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the least possible value of the determinant: \[ D = \begin{vmatrix} a^2 + \lambda & ab & ac \\ ba & b^2 + \lambda & bc \\ ca & cb & c^2 + \lambda \end{vmatrix} \] ### Step 1: Multiply Rows We start by multiplying the first row by \(a\), the second row by \(b\), and the third row by \(c\): \[ D = \begin{vmatrix} a(a^2 + \lambda) & a(ab) & a(ac) \\ b(ba) & b(b^2 + \lambda) & b(bc) \\ c(ca) & c(cb) & c(c^2 + \lambda) \end{vmatrix} \] This simplifies to: \[ D = \begin{vmatrix} a^3 + a\lambda & a^2b & a^2c \\ b^2a & b^3 + b\lambda & b^2c \\ c^2a & c^2b & c^3 + c\lambda \end{vmatrix} \] ### Step 2: Factor Out Common Terms Next, we can factor out \(a\), \(b\), and \(c\) from the first, second, and third columns respectively: \[ D = abc \begin{vmatrix} a^2 + \lambda & ab & ac \\ ba & b^2 + \lambda & bc \\ ca & cb & c^2 + \lambda \end{vmatrix} \] ### Step 3: Row Operation Now, we perform the row operation \(R_1 \to R_1 + R_2 + R_3\): \[ D = abc \begin{vmatrix} a^2 + b^2 + c^2 + \lambda & ab & ac \\ ba & b^2 + \lambda & bc \\ ca & cb & c^2 + \lambda \end{vmatrix} \] ### Step 4: Factor Out Common Terms Again We can factor out \(a^2 + b^2 + c^2 + \lambda\) from the first row: \[ D = abc (a^2 + b^2 + c^2 + \lambda) \begin{vmatrix} 1 & 1 & 1 \\ b & b + \frac{\lambda}{b} & c \\ c & b & c + \frac{\lambda}{c} \end{vmatrix} \] ### Step 5: Simplify the Determinant Now we can simplify the determinant further by performing row operations to make as many entries zero as possible. We can subtract the first row from the second and third rows: \[ D = abc (a^2 + b^2 + c^2 + \lambda) \begin{vmatrix} 1 & 1 & 1 \\ 0 & \frac{\lambda}{b} & 0 \\ 0 & 0 & \frac{\lambda}{c} \end{vmatrix} \] ### Step 6: Calculate the Determinant The determinant simplifies to: \[ D = abc (a^2 + b^2 + c^2 + \lambda) \cdot \frac{\lambda^2}{bc} \] ### Step 7: Find the Minimum Value To find the minimum value, we set \(a = 1\), \(b = 1\), \(c = 1\), and \(\lambda = 1\): \[ D = 1 \cdot 1 \cdot 1 \cdot (1^2 + 1^2 + 1^2 + 1) \cdot \frac{1^2}{1} = 1 \cdot 4 = 4 \] Thus, the least possible value of the determinant is: \[ \boxed{4} \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 41

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 43

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If D=|(a^(2)+1,ab,ac),(ba,b^(2)+1,bc),(ca,cb,c^(2)+1)| then D equal to

If s in2A=lambda sin2B, then write the value of (lambda+1)/(lambda-1)

If the sum of the slopes of the normal from a a point P to the hyperbola xy=c^(2) is equal to lambda(lambda in R^(+)), then the locus of point P is (a) x^(2)=lambda c^(2)( b) y^(2)=lambda c^(2)( c) xy=lambda c^(2)( d) none of these

Prove that |[-a^(2),ab,ac],[ba,-b^(2),bc],[ca,cb,-c^(2)]|=4a^(2)b^(2)c^(2)

If vec a and vec b are two vectors and lambda>0, then the least value of (1+lambda)|vec a|^(2)+(1+(1)/(lambda))|vec b|^(2) is

If p lambda^(4) + q lambda^(3) + r lambda^(2) + s lambda + t = |{:(b^(2)+c^(2), a^(2) + lambda , a^(2) + lambda),(b^(2)+lambda,c^(2)+a^(2),b^(2)+lambda),(c^(2)+lambda,c^(2)+lambda,a^(2)+b^(2)):}| is an identity in lambda wherep, q, r,s , t are constants, then the value of t is

If x^(n)-1 is divisible by x-lambda, then the least prositive integral value of lambda is 1 b.3 c.4 d.2

Show that if lambda_(1), lambda_(2), ...., lamnda_(n) are n eigenvalues of a square matrix a of order n, then the eigenvalues of the matric A^(2) are lambda_(1)^(2), lambda_(2)^(2),..., lambda_(n)^(2) .

The values of lambda for which the function f(x)=lambda x^(3)-2 lambda x^(2)+(lambda+1)x+3 lambda is increasing through out number line (a) lambda in(-3,3)( b) lambda in(-3,0)( c )lambda in(0,3) (d) lambda in(1,3)

NTA MOCK TESTS-NTA JEE MOCK TEST 42-MATHEMATICS
  1. Let vecalpha=(1)/(a)hati+(4)/(b)hatj+bhatk and vecbeta=bhati+ahatj+(1)...

    Text Solution

    |

  2. If 2 data sets having 10 and 20 observation have coefficients of varia...

    Text Solution

    |

  3. |[alpha]+[beta]+[gamma]|, where [.] denotes the integer function, is e...

    Text Solution

    |

  4. If 2, h(1), h(2),………,h(20)6 are in harmonic progression and 2, a(1),a(...

    Text Solution

    |

  5. In sinA and cosA are the roots of the equation 4x^(2)-3x+a=0, sinA+cos...

    Text Solution

    |

  6. The statement phArr q is not equivalent to

    Text Solution

    |

  7. The curve represented by x = 3 (cost + sint), y = 4(cost – sint), is

    Text Solution

    |

  8. The plane 4x+7y+4z+81=0 is rotated through a right angle about its lin...

    Text Solution

    |

  9. The lengths of the perpendiculars from the points (m^(2), 2m), (mn, m+...

    Text Solution

    |

  10. The value of int(0)^(oo)(dx)/(1+x^(4)) is equal to

    Text Solution

    |

  11. The coefficient of x^5 in the expansion of (1+x/(1!)+x^2/(2!)+x^3/(3...

    Text Solution

    |

  12. Which of the following equations of a line intercepts on the circle x^...

    Text Solution

    |

  13. The value of the integral inte^(x^(2)+(1)/(2))(2x^(2)-(1)/(x)+1)dx is ...

    Text Solution

    |

  14. If AneB, AB = BA and A^(2)=B^(2), then the value of the determinant of...

    Text Solution

    |

  15. The locus of the mid-point of the chords of the hyperbola x^(2)-y^(2)=...

    Text Solution

    |

  16. The area bounded by the curve y={x} with the x-axis from x=pi to x=3.8...

    Text Solution

    |

  17. Consider the function f(x)=tan^(-1){(3x-2)/(3+2x)}, AA x ge 0. If g(x)...

    Text Solution

    |

  18. If inte^(-(x^(2))/(2))dx=f(x) and the solution of the differential equ...

    Text Solution

    |

  19. A subset of 5 elements is chosen from the set of first 15 natural numb...

    Text Solution

    |

  20. If a,b, c, lambda in N, then the least possible value of |(a^(2)+lambd...

    Text Solution

    |