Home
Class 12
MATHS
If f:A rarr B defined by f(x)=sinx-cosx+...

If `f:A rarr B` defined by `f(x)=sinx-cosx+3sqrt2` is an invertible function, then the correct statement can be

A

`A=[(pi)/(4),(5pi)/(4)],B=[3sqrt2, 4sqrt2]`

B

`A=[(-pi)/(4),(5pi)/(4)],B=[2sqrt2, 4sqrt2]`

C

`A=[(-pi)/(4),(3pi)/(4)], B=[sqrt2, 4sqrt2]`

D

`A=[(-pi)/(4),(3pi)/(4)], B=[2sqrt2, 4sqrt2]`

Text Solution

AI Generated Solution

The correct Answer is:
To determine if the function \( f(x) = \sin x - \cos x + 3\sqrt{2} \) is invertible, we need to check if it is both one-to-one (1-1) and onto (onto). ### Step-by-Step Solution: 1. **Rewrite the Function**: We can rewrite the function in a more manageable form: \[ f(x) = \sin x - \cos x + 3\sqrt{2} \] We can factor out \( \sqrt{2} \) to help with the analysis: \[ f(x) = \sqrt{2} \left( \frac{1}{\sqrt{2}} \sin x - \frac{1}{\sqrt{2}} \cos x \right) + 3\sqrt{2} \] 2. **Use Trigonometric Identities**: Recognizing that \( \frac{1}{\sqrt{2}} \) corresponds to \( \sin\left(\frac{\pi}{4}\right) \) and \( \cos\left(\frac{\pi}{4}\right) \), we can use the sine subtraction formula: \[ f(x) = \sqrt{2} \sin\left(x - \frac{\pi}{4}\right) + 3\sqrt{2} \] 3. **Determine the Interval for 1-1**: The sine function is one-to-one in the interval \( \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \). Therefore, we need to restrict \( x \) to this interval: \[ x - \frac{\pi}{4} \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \] This gives us: \[ -\frac{\pi}{2} + \frac{\pi}{4} < x < \frac{\pi}{2} + \frac{\pi}{4} \] Simplifying this: \[ -\frac{\pi}{4} < x < \frac{3\pi}{4} \] 4. **Find the Range of the Function**: Now we need to find the minimum and maximum values of \( f(x) \) in the interval \( \left[-\frac{\pi}{4}, \frac{3\pi}{4}\right] \). - **At \( x = -\frac{\pi}{4} \)**: \[ f\left(-\frac{\pi}{4}\right) = \sqrt{2} \sin\left(-\frac{\pi}{4} - \frac{\pi}{4}\right) + 3\sqrt{2} = \sqrt{2} \sin\left(-\frac{\pi}{2}\right) + 3\sqrt{2} = 0 + 3\sqrt{2} = 3\sqrt{2} \] - **At \( x = \frac{3\pi}{4} \)**: \[ f\left(\frac{3\pi}{4}\right) = \sqrt{2} \sin\left(\frac{3\pi}{4} - \frac{\pi}{4}\right) + 3\sqrt{2} = \sqrt{2} \sin\left(\frac{\pi}{2}\right) + 3\sqrt{2} = \sqrt{2} + 3\sqrt{2} = 4\sqrt{2} \] 5. **Conclusion**: Since \( f(x) \) is one-to-one in the interval \( \left[-\frac{\pi}{4}, \frac{3\pi}{4}\right] \) and the range of \( f(x) \) is \( [3\sqrt{2}, 4\sqrt{2}] \), we conclude that the function is invertible on this interval.
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 42

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 44

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If f:A rarr B defined as f(x)=2sinx-2 cos x+3sqrt2 is an invertible function, then the correct statement can be

If f:R rarr R defined by f(x)=(2x-1)/(5) be an invertible function, write f^(-1)(x) .

If F:R rarr R given by f(x)=x^(3)+5 is an invertible function,than f^(-1)(x) is

f(x) = e^(sinx+cosx) is an increasing function in

Let f:ArarrB is a function defined by f(x)=(2x)/(1+x^(2)) . If the function f(x) is a bijective function, than the correct statement can be

The function f:R rarr R defined by f(x)=x+sqrt(x^(2)) is

Let f:R rarr R defined as f(x)=(2x-3)/(5) be an invertible function.What is f^(-1) .

Let f:A rarr B be a function defined by f(x)sqrt(3)sin x+cos x+4. If f is invertible, then

(a) If f:RrarrR defined by f(x)=(3x+5)/(2) is an invertible function, find f^(-1) . Show that f:RrarrR defined by f(x)=(4x-3)/(5),x inR is invertible function and find f^(-1) .

The function f(x)=tan^(-1)(sinx+cosx) is an increasing function in

NTA MOCK TESTS-NTA JEE MOCK TEST 43-MATHEMATICS
  1. If alpha and beta are the roots of the equation 2x^(2)+4x-5=0, then th...

    Text Solution

    |

  2. If f:A rarr B defined by f(x)=sinx-cosx+3sqrt2 is an invertible functi...

    Text Solution

    |

  3. Three numbers a, b and c are in between 2 and 18 such that 2, a, b are...

    Text Solution

    |

  4. If the sum of the coefficients in the expansion of (1+3x)^(n) lies bet...

    Text Solution

    |

  5. In a shooting competition a man can score 5, 4, 3, 2, 1 or 0 points fo...

    Text Solution

    |

  6. If 4sin 26^(@)=sqrtalpha-sqrtbeta, then the value of alpha+beta is

    Text Solution

    |

  7. If int(dx)/(sqrt(e^(x)-1))=2tan^(-1)(f(x))+C, (where x gt0 and C is th...

    Text Solution

    |

  8. Consider I(alpha)=int(alpha)^(alpha^(2))(dx)/(x) (where alpha gt 0), t...

    Text Solution

    |

  9. If the mean and the variance of the numbers a, b, 8, 5 and 10 are 6 an...

    Text Solution

    |

  10. If the solution of the differential equation y^(3)x^(2)cos(x^(3))dx+si...

    Text Solution

    |

  11. If cos^(-1)(n)/(2pi)gt(2pi)/(3) then maximum and minimum values of int...

    Text Solution

    |

  12. The value of f(0) such that the function f(x)=(root3(1+2x)-root4(1+x))...

    Text Solution

    |

  13. If m(1) and m(2) are slopes of the tangents to the ellipse (x^(2))/(16...

    Text Solution

    |

  14. Let veca and vecb be non collinear vectors of which veca is a unit vec...

    Text Solution

    |

  15. There are 6 positive numbers and 8 negative numbers. Three numbers are...

    Text Solution

    |

  16. The image of the line (x)/(2)=(y-1)/(5)=(z+1)/(3) in the plane x+y+2z=...

    Text Solution

    |

  17. A square matrix A of order 3 satisfies A^(2)=I-2A, where I is an ident...

    Text Solution

    |

  18. The perimeter of a parallelogram whose sides are represented by the li...

    Text Solution

    |

  19. If the length of the tangents from P(1, 3) and Q (3, 7) to a circle ar...

    Text Solution

    |

  20. The length of the chord y=sqrt3x-2sqrt3 intercepted by the parabola y^...

    Text Solution

    |