Home
Class 12
MATHS
Consider I(alpha)=int(alpha)^(alpha^(2))...

Consider `I(alpha)=int_(alpha)^(alpha^(2))(dx)/(x)` (where `alpha gt 0`), then the value of `Sigma_(r=2)^(5)I(r )+Sigma_(k=2)^(5)I((1)/(k))` is

A

0

B

1

C

ln 2

D

ln 4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ \Sigma_{r=2}^{5} I(r) + \Sigma_{k=2}^{5} I\left(\frac{1}{k}\right) \] where \[ I(\alpha) = \int_{\alpha}^{\alpha^2} \frac{dx}{x} \] ### Step 1: Evaluate \(I(\alpha)\) First, we compute \(I(\alpha)\): \[ I(\alpha) = \int_{\alpha}^{\alpha^2} \frac{dx}{x} \] The integral of \(\frac{1}{x}\) is \(\log x\). Thus, we have: \[ I(\alpha) = \left[ \log x \right]_{\alpha}^{\alpha^2} = \log(\alpha^2) - \log(\alpha) = 2\log(\alpha) - \log(\alpha) = \log(\alpha) \] ### Step 2: Compute \(\Sigma_{r=2}^{5} I(r)\) Now we compute the first summation: \[ \Sigma_{r=2}^{5} I(r) = I(2) + I(3) + I(4) + I(5) \] Calculating each term: \[ I(2) = \log(2), \quad I(3) = \log(3), \quad I(4) = \log(4), \quad I(5) = \log(5) \] Thus, \[ \Sigma_{r=2}^{5} I(r) = \log(2) + \log(3) + \log(4) + \log(5) \] ### Step 3: Compute \(\Sigma_{k=2}^{5} I\left(\frac{1}{k}\right)\) Next, we compute the second summation: \[ \Sigma_{k=2}^{5} I\left(\frac{1}{k}\right) = I\left(\frac{1}{2}\right) + I\left(\frac{1}{3}\right) + I\left(\frac{1}{4}\right) + I\left(\frac{1}{5}\right) \] Calculating each term: \[ I\left(\frac{1}{2}\right) = \log\left(\frac{1}{2}\right) = -\log(2) \] \[ I\left(\frac{1}{3}\right) = \log\left(\frac{1}{3}\right) = -\log(3) \] \[ I\left(\frac{1}{4}\right) = \log\left(\frac{1}{4}\right) = -\log(4) \] \[ I\left(\frac{1}{5}\right) = \log\left(\frac{1}{5}\right) = -\log(5) \] Thus, \[ \Sigma_{k=2}^{5} I\left(\frac{1}{k}\right) = -\log(2) - \log(3) - \log(4) - \log(5) \] ### Step 4: Combine the Results Now we combine both summations: \[ \Sigma_{r=2}^{5} I(r) + \Sigma_{k=2}^{5} I\left(\frac{1}{k}\right) = \left(\log(2) + \log(3) + \log(4) + \log(5)\right) + \left(-\log(2) - \log(3) - \log(4) - \log(5)\right) \] This simplifies to: \[ 0 \] ### Final Answer Thus, the value of \[ \Sigma_{r=2}^{5} I(r) + \Sigma_{k=2}^{5} I\left(\frac{1}{k}\right) = 0 \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 42

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 44

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

Let 4alpha int_(-1)^2 e^(-alpha|x|) dx = 5 , then alpha =

Let 2 alpha^(2)+6 alpha beta+5 beta^(2)=1, where alpha,beta in R then the maximum value of (2 alpha^(2)-1) is

If alpha_(0),alpha_(1),alpha_(2)----alpha_(n-1) be the nth roots of unity then the value of sum_(r=0)^(n-1)(alpha_(r))/(3-alpha_(r)) is

If I=int_(0)^(2)e^(x^(4))(x-alpha)dx=0 , then alpha lies in the interval

If alpha=e^(2 pi(i)/(11)) and f(x)=5+sum_(k=1)^(60)A_(x)^(k), then the value of sum_(r=0)^(10)f(alpha^(r)x) is

If 0 le alpha le 2pi and int_(0)^(alpha)cos x dx = cos 2alpha , the : alpha =

If S={(alpha+i)/(alpha-i),alpha in R} then the S lies on

Consider the equation x^2-5x+2=0 with roots alpha, beta , then the value of alpha+beta+alpha^(-1)+beta^(-1)=?

For k in N , let (1)/( alpha (alpha +1) (alpha +2) .....(alpha + 20)) = sum _( k =0) ^( 20) (A _(k))/( alpha + k ), where a gt 0. Then the value of 1000 ((A _(14) + A _(15) )/( A _(13))) is equal to _________.

NTA MOCK TESTS-NTA JEE MOCK TEST 43-MATHEMATICS
  1. If 4sin 26^(@)=sqrtalpha-sqrtbeta, then the value of alpha+beta is

    Text Solution

    |

  2. If int(dx)/(sqrt(e^(x)-1))=2tan^(-1)(f(x))+C, (where x gt0 and C is th...

    Text Solution

    |

  3. Consider I(alpha)=int(alpha)^(alpha^(2))(dx)/(x) (where alpha gt 0), t...

    Text Solution

    |

  4. If the mean and the variance of the numbers a, b, 8, 5 and 10 are 6 an...

    Text Solution

    |

  5. If the solution of the differential equation y^(3)x^(2)cos(x^(3))dx+si...

    Text Solution

    |

  6. If cos^(-1)(n)/(2pi)gt(2pi)/(3) then maximum and minimum values of int...

    Text Solution

    |

  7. The value of f(0) such that the function f(x)=(root3(1+2x)-root4(1+x))...

    Text Solution

    |

  8. If m(1) and m(2) are slopes of the tangents to the ellipse (x^(2))/(16...

    Text Solution

    |

  9. Let veca and vecb be non collinear vectors of which veca is a unit vec...

    Text Solution

    |

  10. There are 6 positive numbers and 8 negative numbers. Three numbers are...

    Text Solution

    |

  11. The image of the line (x)/(2)=(y-1)/(5)=(z+1)/(3) in the plane x+y+2z=...

    Text Solution

    |

  12. A square matrix A of order 3 satisfies A^(2)=I-2A, where I is an ident...

    Text Solution

    |

  13. The perimeter of a parallelogram whose sides are represented by the li...

    Text Solution

    |

  14. If the length of the tangents from P(1, 3) and Q (3, 7) to a circle ar...

    Text Solution

    |

  15. The length of the chord y=sqrt3x-2sqrt3 intercepted by the parabola y^...

    Text Solution

    |

  16. If |Z-2|=2|Z-1|, then the value of (Re(Z))/(|Z|^(2)) is (where Z is a ...

    Text Solution

    |

  17. If (1)(2020)+(2)(2019)+(3)(2018)+…….+(2020)(1)=2020xx2021xxk, then the...

    Text Solution

    |

  18. The function f(x)=e^(x^(3)-6x^(2)+10) attains local extremum at x = a ...

    Text Solution

    |

  19. If L=lim(xrarr(pi)/(4))((1-tanx(1)-sin2x))/((1+tanx)(pi-4x)^(3)), then...

    Text Solution

    |

  20. If A and B are square matrices of order 3 such that "AA"^(T)=3B and 2A...

    Text Solution

    |