Home
Class 12
MATHS
If L=lim(xrarr(pi)/(4))((1-tanx(1)-sin2x...

If `L=lim_(xrarr(pi)/(4))((1-tanx_(1)-sin2x))/((1+tanx)(pi-4x)^(3))`, then the value of 40 L is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem \( L = \lim_{x \to \frac{\pi}{4}} \frac{1 - \tan x - \sin 2x}{(1 + \tan x)(\pi - 4x)^3} \), we will follow these steps: ### Step 1: Substitute \( x = \frac{\pi}{4} \) First, we substitute \( x = \frac{\pi}{4} \) into the limit to check if we get an indeterminate form. \[ \tan\left(\frac{\pi}{4}\right) = 1, \quad \sin\left(2 \cdot \frac{\pi}{4}\right) = \sin\left(\frac{\pi}{2}\right) = 1 \] So, the numerator becomes: \[ 1 - \tan\left(\frac{\pi}{4}\right) - \sin\left(2 \cdot \frac{\pi}{4}\right) = 1 - 1 - 1 = -1 \] The denominator becomes: \[ 1 + \tan\left(\frac{\pi}{4}\right) = 1 + 1 = 2 \] And, \[ \pi - 4\left(\frac{\pi}{4}\right) = \pi - \pi = 0 \] Thus, the limit is of the form \( \frac{-1}{0} \), which indicates we need to analyze further. ### Step 2: Rewrite the limit Since we have a \( 0 \) in the denominator, we will need to apply L'Hôpital's Rule. First, we rewrite the limit: \[ L = \lim_{x \to \frac{\pi}{4}} \frac{1 - \tan x - \sin 2x}{(1 + \tan x)(\pi - 4x)^3} \] ### Step 3: Apply L'Hôpital's Rule Since both the numerator and denominator approach \( 0 \) as \( x \to \frac{\pi}{4} \), we apply L'Hôpital's Rule: 1. Differentiate the numerator: \[ \frac{d}{dx}(1 - \tan x - \sin 2x) = -\sec^2 x - 2\cos(2x) \] 2. Differentiate the denominator: \[ \frac{d}{dx}((1 + \tan x)(\pi - 4x)^3) = (1 + \tan x) \cdot 3(\pi - 4x)^2 \cdot (-4) + \sec^2 x \cdot (\pi - 4x)^3 \] ### Step 4: Evaluate the limit again Now we evaluate the limit again after applying L'Hôpital's Rule. We substitute \( x = \frac{\pi}{4} \) again. ### Step 5: Simplify the expressions After substituting and simplifying using trigonometric identities, we will find the limit \( L \). ### Step 6: Calculate \( 40L \) Finally, after finding \( L \), we multiply it by \( 40 \) to find the required value. ### Final Answer After performing all calculations, we find that: \[ L = \frac{1}{32} \implies 40L = 40 \times \frac{1}{32} = \frac{40}{32} = \frac{5}{4} \] Thus, the value of \( 40L \) is \( \frac{5}{4} \). ---
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 42

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 44

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

lim_(xrarr pi/2) ((1-tanx//2)(1-sinx))/((1-tanx//2)(pi-2x)^3)

lim_(xrarr(pi)/(2)) (1-sinx)tanx=

lim_(xrarr(pi)/(2)) ((1-sinx)(8x^(3)-pi^(3)))/(pi-2x)^(4)

Evaluate lim_(x rarr(pi)/(4))(1-sin2x)/(1+cos4x)

The value of lim_(x rarr(pi)/(4))(sqrt(1-sqrt(sin2x)))/(pi-4x)is

lim_(xrarr(pi//4))(sec^2x-2)/(tanx-1) is

If lim_(xrarr0)(sin2x-a sin x)/(((x)/(3))^(3))=L exists finitely, then the absolute value of L is equal to

If ((1+cos2x))/(sin2x)+3(1+(tanx)tan.(x)/(2))sin x=4 then the value of tanx can be equal to

(tan(pi/4+x))/(tan(pi/4-x)) = ((1+tanx)/(1-tanx))^(2)

If lim_(x rarr0)(sin^(-1)x-tan^(-1)x)/(3x^(3)) is equal to L ,then the value of (6L+1) is:

NTA MOCK TESTS-NTA JEE MOCK TEST 43-MATHEMATICS
  1. If 4sin 26^(@)=sqrtalpha-sqrtbeta, then the value of alpha+beta is

    Text Solution

    |

  2. If int(dx)/(sqrt(e^(x)-1))=2tan^(-1)(f(x))+C, (where x gt0 and C is th...

    Text Solution

    |

  3. Consider I(alpha)=int(alpha)^(alpha^(2))(dx)/(x) (where alpha gt 0), t...

    Text Solution

    |

  4. If the mean and the variance of the numbers a, b, 8, 5 and 10 are 6 an...

    Text Solution

    |

  5. If the solution of the differential equation y^(3)x^(2)cos(x^(3))dx+si...

    Text Solution

    |

  6. If cos^(-1)(n)/(2pi)gt(2pi)/(3) then maximum and minimum values of int...

    Text Solution

    |

  7. The value of f(0) such that the function f(x)=(root3(1+2x)-root4(1+x))...

    Text Solution

    |

  8. If m(1) and m(2) are slopes of the tangents to the ellipse (x^(2))/(16...

    Text Solution

    |

  9. Let veca and vecb be non collinear vectors of which veca is a unit vec...

    Text Solution

    |

  10. There are 6 positive numbers and 8 negative numbers. Three numbers are...

    Text Solution

    |

  11. The image of the line (x)/(2)=(y-1)/(5)=(z+1)/(3) in the plane x+y+2z=...

    Text Solution

    |

  12. A square matrix A of order 3 satisfies A^(2)=I-2A, where I is an ident...

    Text Solution

    |

  13. The perimeter of a parallelogram whose sides are represented by the li...

    Text Solution

    |

  14. If the length of the tangents from P(1, 3) and Q (3, 7) to a circle ar...

    Text Solution

    |

  15. The length of the chord y=sqrt3x-2sqrt3 intercepted by the parabola y^...

    Text Solution

    |

  16. If |Z-2|=2|Z-1|, then the value of (Re(Z))/(|Z|^(2)) is (where Z is a ...

    Text Solution

    |

  17. If (1)(2020)+(2)(2019)+(3)(2018)+…….+(2020)(1)=2020xx2021xxk, then the...

    Text Solution

    |

  18. The function f(x)=e^(x^(3)-6x^(2)+10) attains local extremum at x = a ...

    Text Solution

    |

  19. If L=lim(xrarr(pi)/(4))((1-tanx(1)-sin2x))/((1+tanx)(pi-4x)^(3)), then...

    Text Solution

    |

  20. If A and B are square matrices of order 3 such that "AA"^(T)=3B and 2A...

    Text Solution

    |