Home
Class 12
MATHS
The value of int(0)^((pi)/(3))log(1+sqrt...

The value of `int_(0)^((pi)/(3))log(1+sqrt3 tanx)dx` is equal to

A

`pilog2`

B

`(pi)/(2)log2`

C

`(pi)/(3)log2`

D

`(pi)/(4)log2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\frac{\pi}{3}} \log(1 + \sqrt{3} \tan x) \, dx \), we can use a property of definite integrals. ### Step 1: Use the property of definite integrals We can use the property: \[ \int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(a + b - x) \, dx \] In our case, \( a = 0 \) and \( b = \frac{\pi}{3} \). Thus, we can rewrite the integral as: \[ I = \int_{0}^{\frac{\pi}{3}} \log(1 + \sqrt{3} \tan\left(\frac{\pi}{3} - x\right)) \, dx \] ### Step 2: Simplify \( \tan\left(\frac{\pi}{3} - x\right) \) Using the tangent subtraction formula: \[ \tan\left(\frac{\pi}{3} - x\right) = \frac{\tan\frac{\pi}{3} - \tan x}{1 + \tan\frac{\pi}{3} \tan x} = \frac{\sqrt{3} - \tan x}{1 + \sqrt{3} \tan x} \] Now substitute this back into the integral: \[ I = \int_{0}^{\frac{\pi}{3}} \log\left(1 + \sqrt{3} \cdot \frac{\sqrt{3} - \tan x}{1 + \sqrt{3} \tan x}\right) \, dx \] ### Step 3: Simplify the logarithm Now simplify the argument of the logarithm: \[ 1 + \sqrt{3} \cdot \frac{\sqrt{3} - \tan x}{1 + \sqrt{3} \tan x} = \frac{(1 + \sqrt{3} \tan x) + \sqrt{3}(\sqrt{3} - \tan x)}{1 + \sqrt{3} \tan x} = \frac{1 + 3}{1 + \sqrt{3} \tan x} = \frac{4}{1 + \sqrt{3} \tan x} \] Thus, we have: \[ I = \int_{0}^{\frac{\pi}{3}} \log\left(\frac{4}{1 + \sqrt{3} \tan x}\right) \, dx \] ### Step 4: Split the logarithm Using the property of logarithms: \[ \log\left(\frac{a}{b}\right) = \log a - \log b \] We can split the integral: \[ I = \int_{0}^{\frac{\pi}{3}} \log(4) \, dx - \int_{0}^{\frac{\pi}{3}} \log(1 + \sqrt{3} \tan x) \, dx \] The first integral evaluates to: \[ \int_{0}^{\frac{\pi}{3}} \log(4) \, dx = \log(4) \cdot \frac{\pi}{3} \] Thus: \[ I = \frac{\pi}{3} \log(4) - I \] ### Step 5: Solve for \( I \) Combining the terms gives: \[ 2I = \frac{\pi}{3} \log(4) \] Thus: \[ I = \frac{\pi}{6} \log(4) \] ### Step 6: Simplify \( \log(4) \) Since \( \log(4) = 2 \log(2) \), we have: \[ I = \frac{\pi}{6} \cdot 2 \log(2) = \frac{\pi}{3} \log(2) \] ### Final Result The value of the integral is: \[ \boxed{\frac{\pi}{3} \log(2)} \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 44

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 46

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

The value of int_(0)^((pi)/(2))(ln|tan x+cot x|)dx is equal to

The value of int_( 0)^(pi//4) (pix-4x^(2))log(1+tanx)dx is

The value of the definte integral int_(0)^((pi)/(2))ln(1+sqrt(3)tan theta)dx, is equal to (pi)/(p)log_(e)q where q and p prim then (q+p) is equal to

The value of the definite integral int_(0)^((pi)/(3))ln(1+sqrt(3)tan x)dx equals -

int_(0)^(pi//2) (dx)/(1+root(3)(tanx)) is equal to

What is the value of int_(0)^(pi/2) log (tanx) dx ?

The value of int_(0)^(-pi//4)(1+tanx)/(1-tanx)dx is

NTA MOCK TESTS-NTA JEE MOCK TEST 45-MATHEMATICS
  1. If the sum of the root of the equation cos 4x + 6+7 cos 2x in the in...

    Text Solution

    |

  2. If A(0, 0), B(theta, cos theta) and C(sin^(3) theta, 0) are the vertic...

    Text Solution

    |

  3. The value of int(0)^((pi)/(3))log(1+sqrt3 tanx)dx is equal to

    Text Solution

    |

  4. The area (in sq. units) enclosed between the curve x=(1-t^(2))/(1+t^(2...

    Text Solution

    |

  5. The solution of the differential equation y(2x^(4)+y)(dy)/(dx) = (1-...

    Text Solution

    |

  6. R rarr R be defined by f(x)=((e^(2x)-e^(-2x)))/2. is f(x) invertible. ...

    Text Solution

    |

  7. The value of lim(xrarr1)(xtan{x})/(x-1) is equal to (where {x} denotes...

    Text Solution

    |

  8. If the lines (x-1)/(1)=(y-3)/(1)=(z-2)/(lambda) and (x-1)/(lambda)=(y-...

    Text Solution

    |

  9. Let A and B are square matrices of order 2 such that A+adj(B^(T))=[(3,...

    Text Solution

    |

  10. A bag contains 40 tickets numbered from 1 to 40. Two tickets are drawn...

    Text Solution

    |

  11. Let A and B be two square matrices of order 3 such that |A|=3 and |B|=...

    Text Solution

    |

  12. Point P(-1, 7) lies on the line 4x+3y=17. Then the coordinates of the ...

    Text Solution

    |

  13. From the point A(0, 3) on the circle x^(2)+9x+(y-3)^(2)=0, a chord AB ...

    Text Solution

    |

  14. OA is the chord of the parabola y^(2)=4x and perpendicular to OA which...

    Text Solution

    |

  15. If A(2+3i) and B(3+4i) are two vertices of a square ABCD (taken in ant...

    Text Solution

    |

  16. Two poles of height 10 meters and 20 meters stand at the centres of tw...

    Text Solution

    |

  17. If in a class there are 200 students in which 120 take Mathematics, 90...

    Text Solution

    |

  18. If the variance of first n even natural numbers is 133, then the value...

    Text Solution

    |

  19. The arithmetic mean of two positive numbers a and b exceeds their geo...

    Text Solution

    |

  20. If P and Q are points with eccentric angles theta and (theta+(pi)/(6))...

    Text Solution

    |