Home
Class 12
MATHS
If A=[(3,-2),(7,-5)], then the value of ...

If `A=[(3,-2),(7,-5)]`, then the value of `|-3A^(2019)+A^(2020)|` is equal to

A

`-14`

B

28

C

14

D

`2^(2019)*14`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(|-3A^{2019} + A^{2020}|\) where \(A = \begin{pmatrix} 3 & -2 \\ 7 & -5 \end{pmatrix}\). ### Step-by-Step Solution: 1. **Identify the Matrix and Its Properties**: We have the matrix \(A\): \[ A = \begin{pmatrix} 3 & -2 \\ 7 & -5 \end{pmatrix} \] 2. **Calculate the Determinant of Matrix A**: The determinant of a 2x2 matrix \(\begin{pmatrix} a & b \\ c & d \end{pmatrix}\) is given by \(ad - bc\). \[ |A| = 3 \cdot (-5) - (-2) \cdot 7 = -15 + 14 = -1 \] 3. **Express the Given Expression**: We can rewrite the expression \(|-3A^{2019} + A^{2020}|\) as: \[ |-3A^{2019} + A^{2020}| = |A^{2019}(-3I + A)| \] where \(I\) is the identity matrix. 4. **Factor Out \(A^{2019}\)**: Since the determinant of a product of matrices is the product of their determinants, we have: \[ |A^{2019}(-3I + A)| = |A^{2019}| \cdot |-3I + A| \] 5. **Calculate \(|A^{2019}|\)**: The determinant of \(A^{n}\) is given by \(|A|^n\): \[ |A^{2019}| = |A|^{2019} = (-1)^{2019} = -1 \] 6. **Calculate \(-3I + A\)**: First, we find \(-3I\): \[ -3I = \begin{pmatrix} -3 & 0 \\ 0 & -3 \end{pmatrix} \] Now, add \(A\): \[ -3I + A = \begin{pmatrix} -3 & 0 \\ 0 & -3 \end{pmatrix} + \begin{pmatrix} 3 & -2 \\ 7 & -5 \end{pmatrix} = \begin{pmatrix} 0 & -2 \\ 7 & -8 \end{pmatrix} \] 7. **Calculate the Determinant of \(-3I + A\)**: \[ |-3I + A| = | \begin{pmatrix} 0 & -2 \\ 7 & -8 \end{pmatrix} | = (0)(-8) - (-2)(7) = 0 + 14 = 14 \] 8. **Combine the Results**: Now, we combine the determinants: \[ |-3A^{2019} + A^{2020}| = |A^{2019}| \cdot |-3I + A| = (-1) \cdot 14 = -14 \] ### Final Answer: Thus, the value of \(|-3A^{2019} + A^{2020}|\) is \(-14\).
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • NTA JEE MOCK TEST 46

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 48

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If A=[(2,-1,1),(-2,3,-2),(-4,4,-3)] then the value of A+A^2+A^3+...+A^(2019) is

The value of 3xx10^(-7) is equal to _____________.

Knowledge Check

  • If(a+b)=5,then the value of (a-3)^(7)+(b-2)^(7) is:

    A
    `2^(7)`
    B
    `3^(7)`
    C
    1
    D
    0
  • If f(x) is a continuous function such that f(x) gt 0 for all x gt 0 and (f(x))^(2020)=1+int_(0)^(x) f(t) dt , then the value of {f(2020)}^(2019) is equal to

    A
    2019
    B
    2020
    C
    2021
    D
    2018
  • (-7)^(5)xx(-7)^(3) is equal to

    A
    `(-7)^(8)`
    B
    `-(7)^(8)`
    C
    `(-7)^(15)`
    D
    `(-7)^(2)`
  • Similar Questions

    Explore conceptually related problems

    If (1)(2020)+(2)(2019)+(3)(2018)+…….+(2020)(1)=2020xx2021xxk, then the value of (k)/(100) is equal to

    If (x)/(y)=(6)/(5), then the value of ((6)/(7)-(5x-y)/(5x+y)) is equal to (a) (1)/(7)( b) (2)/(7)(c)(3)/(7) (d) (4)/(7)

    Given that log_(2)3=a,log_(3)5=b,log_(7)2=c then the value of log_(140)63 is equal to

    In the expansion of (ax+b)^(2020) , if the coefficient of x^(2) and x^(3) are equal, then the value of (9)/(100)((b)/(a)) is equal to

    If a + b =5, then the value of (a-3) ^(7) + (b-2) ^(7) is