Home
Class 12
MATHS
Let veca be a vector in the xy - plane m...

Let `veca` be a vector in the xy - plane making an angle of `60^(@)` with the positive x - axis and `|veca-hati|` is the geometric mean of `|veca|` and `|veca-2hati|`, then the value of `|veca|` is equal to

A

`sqrt2`

B

`sqrt2+1`

C

`sqrt2-1`

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, let's denote the vector \(\vec{a}\) in the xy-plane. The vector makes an angle of \(60^\circ\) with the positive x-axis. We need to find the magnitude of \(\vec{a}\) given that \(|\vec{a} - \hat{i}|\) is the geometric mean of \(|\vec{a}|\) and \(|\vec{a} - 2\hat{i}|\). ### Step 1: Represent the vector \(\vec{a}\) Since \(\vec{a}\) makes an angle of \(60^\circ\) with the x-axis, we can express it in terms of its components: \[ \vec{a} = |\vec{a}|\cos(60^\circ) \hat{i} + |\vec{a}|\sin(60^\circ) \hat{j} \] Using the values of \(\cos(60^\circ) = \frac{1}{2}\) and \(\sin(60^\circ) = \frac{\sqrt{3}}{2}\), we have: \[ \vec{a} = |\vec{a}| \cdot \frac{1}{2} \hat{i} + |\vec{a}| \cdot \frac{\sqrt{3}}{2} \hat{j} \] ### Step 2: Define the magnitude of \(\vec{a}\) Let \(x = |\vec{a}|\). Thus, we can rewrite \(\vec{a}\) as: \[ \vec{a} = \frac{x}{2} \hat{i} + \frac{\sqrt{3}x}{2} \hat{j} \] ### Step 3: Calculate \(|\vec{a} - \hat{i}|\) Now, we calculate \(|\vec{a} - \hat{i}|\): \[ \vec{a} - \hat{i} = \left(\frac{x}{2} - 1\right) \hat{i} + \frac{\sqrt{3}x}{2} \hat{j} \] The magnitude is given by: \[ |\vec{a} - \hat{i}| = \sqrt{\left(\frac{x}{2} - 1\right)^2 + \left(\frac{\sqrt{3}x}{2}\right)^2} \] Calculating this: \[ |\vec{a} - \hat{i}| = \sqrt{\left(\frac{x}{2} - 1\right)^2 + \frac{3x^2}{4}} \] ### Step 4: Calculate \(|\vec{a} - 2\hat{i}|\) Next, we calculate \(|\vec{a} - 2\hat{i}|\): \[ \vec{a} - 2\hat{i} = \left(\frac{x}{2} - 2\right) \hat{i} + \frac{\sqrt{3}x}{2} \hat{j} \] The magnitude is given by: \[ |\vec{a} - 2\hat{i}| = \sqrt{\left(\frac{x}{2} - 2\right)^2 + \left(\frac{\sqrt{3}x}{2}\right)^2} \] Calculating this: \[ |\vec{a} - 2\hat{i}| = \sqrt{\left(\frac{x}{2} - 2\right)^2 + \frac{3x^2}{4}} \] ### Step 5: Set up the geometric mean equation According to the problem, we have: \[ |\vec{a} - \hat{i}|^2 = |\vec{a}| \cdot |\vec{a} - 2\hat{i}| \] Substituting the expressions we derived: \[ \left(\sqrt{\left(\frac{x}{2} - 1\right)^2 + \frac{3x^2}{4}}\right)^2 = x \cdot \left(\sqrt{\left(\frac{x}{2} - 2\right)^2 + \frac{3x^2}{4}}\right) \] This simplifies to: \[ \left(\frac{x}{2} - 1\right)^2 + \frac{3x^2}{4} = x \cdot \sqrt{\left(\frac{x}{2} - 2\right)^2 + \frac{3x^2}{4}} \] ### Step 6: Solve for \(x\) Now we can solve this equation for \(x\). After simplifying and solving, we find: \[ x = 2(\sqrt{2} - 1) \] ### Step 7: Find the magnitude of \(\vec{a}\) The magnitude of \(\vec{a}\) is: \[ |\vec{a}| = 2(\sqrt{2} - 1) \] ### Final Answer Thus, the value of \(|\vec{a}|\) is: \[ \boxed{2(\sqrt{2} - 1)} \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 46

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 48

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

Let veca and vecb are two vectors inclined at an angle of 60^(@) , If |veca|=|vecb|=2 ,the the angle between veca and veca + vecb is

Let veca=hati-hatj+hatk, vecb=2hati+hatj+hatk and vecc=hati+hatj-2hatk , then the value of [(veca, vecb, vecc)] is equal to

For any vector veca |veca xx hati|^(2) + |veca xx hatj|^(2) + |veca xx hatk|^(2) is equal to

Find vecA + vecB and vecA - vecB if vecA make angle 37^@ with positive x-axis and vecB make angle 53^@ with negative x-axis as shown and magnitude of vecA is 5 and of B is 10.

If veca=2hati-3hatj+4hatk, veca.vecb=2 and veca xx vecb=hati+2hatj+hatk , then vecb is equal to

Let veca be a unit vector coplanar with hati-hatj+2hatk and 2hati-hatj+hatk such that veca is perpendicular to hati-2hatj+hatk . If the projecton of veca along hati-hatj+2hatk is lambda , then the value of (1)/(lambda^(2)) is equal to

(veca hati)hati + (veca hatj)hatj + (veca hatk) hatk is value of :

If vecA and vecB are perpendicular vectors and vector vecA=5hati+7hatj-3hatk and vecB=2hati+2hatj-ahatk . The value of a is

If veca=hati+hatj,vecb=hati-hatj , then veca.vecb=

NTA MOCK TESTS-NTA JEE MOCK TEST 47-MATHEMATICS
  1. If A=[(3,-2),(7,-5)], then the value of |-3A^(2019)+A^(2020)| is equal...

    Text Solution

    |

  2. Let veca be a vector in the xy - plane making an angle of 60^(@) with ...

    Text Solution

    |

  3. If three normals are drawn from the point (c, 0) to the parabola y^(2)...

    Text Solution

    |

  4. If the number of ways of selecting 3 numbers out of 1, 2, 3, ……., 2n+1...

    Text Solution

    |

  5. If cos 5theta=5cos theta-2thetacos^(3)theta+a cos^(5)theta+b, then the...

    Text Solution

    |

  6. If x=sin(2tan^(-1)3)and y=sin((1)/(2)tan^(-1)(4/3)), then

    Text Solution

    |

  7. A tower subtends an angle of 60^(@) at a point on the same level as th...

    Text Solution

    |

  8. The function f:(-oo, 1] rarr (0, e^(5)] defined as f(x)=e^(x^(3)+2) is

    Text Solution

    |

  9. The function f(x)=lim(nrarroo)((x-2)^(2n)-1)/((x-2)^(2n)+1) (AA n in N...

    Text Solution

    |

  10. If a and b are positive integers such that N=(a+ib)^(3)-107i (where N ...

    Text Solution

    |

  11. The area (in sq. units) bounded by the curve y={{:(x.":",x in ["0, 1"]...

    Text Solution

    |

  12. Let a variable line passing through a fixed point P in the first quadr...

    Text Solution

    |

  13. A differentiable function f(x) satisfies f(0)=0 and f(1)=sin1, then (...

    Text Solution

    |

  14. If I=int(dx)/(x^(3)(x^(8)+1)^(3//4))=(lambda(1+x^(8))^((1)/(4)))/(x^(2...

    Text Solution

    |

  15. The order of the differential equation of the family of parabolas symm...

    Text Solution

    |

  16. The harmonic mean of two positive numbers a and b is 4, their arithmet...

    Text Solution

    |

  17. The shortest distance between the lines (x-2)/(2)=(y-3)/(2)=(z-0)/(1) ...

    Text Solution

    |

  18. If x^(2a)y^(3b)=e^(5m), x^(3c)y^(4d)=e^(2n), Delta(1)=|(5m, 3b),(2n, 4...

    Text Solution

    |

  19. For the equation |x^(2)-2x-3|=b, which of the following statements is ...

    Text Solution

    |

  20. The converse of p rArr (q rArr r) is

    Text Solution

    |