Home
Class 12
MATHS
If x=sin(2tan^(-1)3)and y=sin((1)/(2)tan...

If `x=sin(2tan^(-1)3)and y=sin((1)/(2)tan^(-1)(4/3))`, then

A

`2x=1-y`

B

`x^(2)=1-2y`

C

`x^(2)=1+y`

D

`y^(2)=2x-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( x \) and \( y \) given by: \[ x = \sin(2 \tan^{-1}(3)) \] \[ y = \sin\left(\frac{1}{2} \tan^{-1}\left(\frac{4}{3}\right)\right) \] ### Step 1: Calculate \( x \) Let \( \theta = \tan^{-1}(3) \). Therefore, we have: \[ x = \sin(2\theta) \] Using the double angle formula for sine: \[ \sin(2\theta) = 2 \sin(\theta) \cos(\theta) \] We need to find \( \sin(\theta) \) and \( \cos(\theta) \). From \( \theta = \tan^{-1}(3) \), we know: \[ \tan(\theta) = \frac{3}{1} = 3 \] This can be represented in a right triangle where the opposite side is 3 and the adjacent side is 1. The hypotenuse \( h \) can be calculated using the Pythagorean theorem: \[ h = \sqrt{3^2 + 1^2} = \sqrt{9 + 1} = \sqrt{10} \] Now we can find \( \sin(\theta) \) and \( \cos(\theta) \): \[ \sin(\theta) = \frac{3}{\sqrt{10}}, \quad \cos(\theta) = \frac{1}{\sqrt{10}} \] Substituting these values into the double angle formula: \[ x = 2 \sin(\theta) \cos(\theta) = 2 \cdot \frac{3}{\sqrt{10}} \cdot \frac{1}{\sqrt{10}} = \frac{6}{10} = \frac{3}{5} \] ### Step 2: Calculate \( y \) Now, let \( \phi = \tan^{-1}\left(\frac{4}{3}\right) \). Therefore: \[ y = \sin\left(\frac{1}{2} \phi\right) \] Using the half angle formula for sine: \[ \sin\left(\frac{1}{2} \phi\right) = \sqrt{\frac{1 - \cos(\phi)}{2}} \] We need to find \( \cos(\phi) \). From \( \phi = \tan^{-1}\left(\frac{4}{3}\right) \): \[ \tan(\phi) = \frac{4}{3} \] This can be represented in a right triangle where the opposite side is 4 and the adjacent side is 3. The hypotenuse \( h \) can be calculated: \[ h = \sqrt{4^2 + 3^2} = \sqrt{16 + 9} = \sqrt{25} = 5 \] Now we can find \( \sin(\phi) \) and \( \cos(\phi) \): \[ \sin(\phi) = \frac{4}{5}, \quad \cos(\phi) = \frac{3}{5} \] Substituting \( \cos(\phi) \) into the half angle formula: \[ y = \sqrt{\frac{1 - \cos(\phi)}{2}} = \sqrt{\frac{1 - \frac{3}{5}}{2}} = \sqrt{\frac{\frac{2}{5}}{2}} = \sqrt{\frac{1}{5}} = \frac{1}{\sqrt{5}} \] ### Step 3: Summary of Results We have found: \[ x = \frac{3}{5}, \quad y = \frac{1}{\sqrt{5}} \] ### Step 4: Verify the Options Now we need to check which equation these values satisfy. 1. **First Option:** \( 2x = 1 - y \) \[ 2 \cdot \frac{3}{5} = \frac{6}{5}, \quad 1 - \frac{1}{\sqrt{5}} \neq \frac{6}{5} \] 2. **Second Option:** \( x^2 = 1 - 2y \) \[ \left(\frac{3}{5}\right)^2 = \frac{9}{25}, \quad 1 - 2 \cdot \frac{1}{\sqrt{5}} \neq \frac{9}{25} \] 3. **Third Option:** \( x^2 = 1 + 2y \) \[ \frac{9}{25} \neq 1 + 2 \cdot \frac{1}{\sqrt{5}} \] 4. **Fourth Option:** \( y^2 = 2x - 1 \) \[ \left(\frac{1}{\sqrt{5}}\right)^2 = \frac{1}{5}, \quad 2 \cdot \frac{3}{5} - 1 = \frac{6}{5} - 1 = \frac{1}{5} \] Thus, the fourth option is correct.
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 46

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 48

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If x=sin(2tan^(-1)2sqrt3)and y=sin((1)/(2)tan^(-1).(12)/(5)) , then

If x = sin (2tan ^ (- 1) 2), y = sin ((1) / (2) tan ^ (- 1) ((4) / (3))), then -

If a=cos (2.tan^(-1).(1)/(7))and b = sin (4.tan^(-1).(1)/(3))

If: cos(tan^(-1)x)=sin (cot^(-1).(3)/(4)), then : x =

[sin(tan^(-1).(3)/(4))]^(2) =

NTA MOCK TESTS-NTA JEE MOCK TEST 47-MATHEMATICS
  1. If the number of ways of selecting 3 numbers out of 1, 2, 3, ……., 2n+1...

    Text Solution

    |

  2. If cos 5theta=5cos theta-2thetacos^(3)theta+a cos^(5)theta+b, then the...

    Text Solution

    |

  3. If x=sin(2tan^(-1)3)and y=sin((1)/(2)tan^(-1)(4/3)), then

    Text Solution

    |

  4. A tower subtends an angle of 60^(@) at a point on the same level as th...

    Text Solution

    |

  5. The function f:(-oo, 1] rarr (0, e^(5)] defined as f(x)=e^(x^(3)+2) is

    Text Solution

    |

  6. The function f(x)=lim(nrarroo)((x-2)^(2n)-1)/((x-2)^(2n)+1) (AA n in N...

    Text Solution

    |

  7. If a and b are positive integers such that N=(a+ib)^(3)-107i (where N ...

    Text Solution

    |

  8. The area (in sq. units) bounded by the curve y={{:(x.":",x in ["0, 1"]...

    Text Solution

    |

  9. Let a variable line passing through a fixed point P in the first quadr...

    Text Solution

    |

  10. A differentiable function f(x) satisfies f(0)=0 and f(1)=sin1, then (...

    Text Solution

    |

  11. If I=int(dx)/(x^(3)(x^(8)+1)^(3//4))=(lambda(1+x^(8))^((1)/(4)))/(x^(2...

    Text Solution

    |

  12. The order of the differential equation of the family of parabolas symm...

    Text Solution

    |

  13. The harmonic mean of two positive numbers a and b is 4, their arithmet...

    Text Solution

    |

  14. The shortest distance between the lines (x-2)/(2)=(y-3)/(2)=(z-0)/(1) ...

    Text Solution

    |

  15. If x^(2a)y^(3b)=e^(5m), x^(3c)y^(4d)=e^(2n), Delta(1)=|(5m, 3b),(2n, 4...

    Text Solution

    |

  16. For the equation |x^(2)-2x-3|=b, which of the following statements is ...

    Text Solution

    |

  17. The converse of p rArr (q rArr r) is

    Text Solution

    |

  18. If 4x+3y-12=0 touches (x-p)^(2)+(y-p)^(2)=p^(2), then the sum of all t...

    Text Solution

    |

  19. If A and B are two events such that P(A)=(4)/(7), P(AnnB)=(3)/(28) and...

    Text Solution

    |

  20. If the number of terms free from radicals in the expansion of (7^((1)/...

    Text Solution

    |