Home
Class 12
MATHS
If x^(2a)y^(3b)=e^(5m), x^(3c)y^(4d)=e^(...

If `x^(2a)y^(3b)=e^(5m), x^(3c)y^(4d)=e^(2n), Delta_(1)=|(5m, 3b),(2n, 4d)|, Delta_(2)=|(2a, 5m),(3c, 2n)| and Delta_(3)=|(2a, 3b),(3c, 4d)|`, then the values of x and y are

A

`(Delta_(1))/(Delta_(3)), (Delta_(2))/(Delta_(3))`

B

`(Delta_(2))/(Delta_(1)),(Delta_(3))/(Delta_(1))`

C

`log((Delta_(1))/(Delta_(3))), log((Delta_(2))/(Delta_(3)))`

D

`e^((Delta_(1))/(Delta_(3))`,`e^((Delta_(2))/(Delta_(3)))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will analyze the given equations and determinants. ### Step 1: Write the equations in logarithmic form We start with the equations: 1. \( x^{2a} y^{3b} = e^{5m} \) 2. \( x^{3c} y^{4d} = e^{2n} \) Taking the natural logarithm (log base e) of both sides, we have: 1. \( 2a \log x + 3b \log y = 5m \) (Equation 1) 2. \( 3c \log x + 4d \log y = 2n \) (Equation 2) ### Step 2: Set up the determinants We define the determinants as follows: - \( \Delta_1 = \begin{vmatrix} 5m & 3b \\ 2n & 4d \end{vmatrix} \) - \( \Delta_2 = \begin{vmatrix} 2a & 5m \\ 3c & 2n \end{vmatrix} \) - \( \Delta_3 = \begin{vmatrix} 2a & 3b \\ 3c & 4d \end{vmatrix} \) ### Step 3: Calculate the determinants 1. **Calculate \( \Delta_1 \)**: \[ \Delta_1 = (5m)(4d) - (3b)(2n) = 20md - 6bn \] 2. **Calculate \( \Delta_2 \)**: \[ \Delta_2 = (2a)(2n) - (5m)(3c) = 4an - 15mc \] 3. **Calculate \( \Delta_3 \)**: \[ \Delta_3 = (2a)(4d) - (3b)(3c) = 8ad - 9bc \] ### Step 4: Express \( \log x \) and \( \log y \) in terms of the determinants Using Cramer's rule, we can express \( \log x \) and \( \log y \) as: - \( \log x = \frac{\Delta_1}{\Delta_3} \) - \( \log y = \frac{\Delta_2}{\Delta_3} \) ### Step 5: Solve for \( x \) and \( y \) Now, we can find \( x \) and \( y \) by exponentiating: 1. \( x = e^{\log x} = e^{\frac{\Delta_1}{\Delta_3}} \) 2. \( y = e^{\log y} = e^{\frac{\Delta_2}{\Delta_3}} \) ### Final Step: Substitute the determinants back into the equations Substituting the values of \( \Delta_1 \), \( \Delta_2 \), and \( \Delta_3 \): 1. \( x = e^{\frac{20md - 6bn}{8ad - 9bc}} \) 2. \( y = e^{\frac{4an - 15mc}{8ad - 9bc}} \) ### Conclusion Thus, the values of \( x \) and \( y \) are: - \( x = e^{\frac{20md - 6bn}{8ad - 9bc}} \) - \( y = e^{\frac{4an - 15mc}{8ad - 9bc}} \)
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 46

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 48

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If x^a y^b=e^m , x^c y^d=e^n ,Delta_1=|(m,b),(n,d)|,and Delta_2 =|(a,m),(c,n)| and Delta_3=|(a,b),(c,d)|, then the values of x and y are

If [(2a+b,a-2b),(5c-d,4c+3d)]=[(4,-3),(11,24)] , then value of a+b-c +2d is :

If [(2a+b, a-2b),(5c-d, 4c+3d)]=[(4,-3),(11,24)] , then value of a + b – c + 2d is:

If 2x+y=5 and 3x-4y=2, then the value of 2xy is (a) 4 (b) 6 (c) 8 (d) 10

A=(1,2),B(3,4) and the locus of C is 2x+3y=5 then the locus of the centroid of Delta ABC is

The solution of the system of equations a_(1)x+b_(1)y+c_(1)z=d_(1),a_(2)x+b_(2)y+c_(2)z=d_(2) and a_(3)x+b_(3)y+c_(3)z=d_(3) using Crammer's rule is x=(Delta_(1))/(Delta),y=(Delta_(2))/(Delta) and z=(Delta_(3))/(Delta) where Delta!=0 The solution of 2x+y+z=1,x-2y-3z=1,3x+2y+4z=5 is

The solution of the system of equations a_(1)x+b_(1)y+c_(1)z=d_(1),a_(2)x+b_(2)y+c_(2)z=d_(2) and a_(3)x+b_(3)y+c_(3)z=d_(3) using Crammer's rule is x=(Delta_(1))/(Delta),y=(Delta_(2))/(Delta) and z=(Delta_(3))/(Delta) where Delta!=0 The solution of the system 2x+y+z=1 , x-2y-z=(3)/(2) , 3y-5z=9 is

If Delta_(m) = |(m -1,n,6),((m-1)^(2),2n^(2),4n -2),((m -1)^(3),3n^(3),3n^(2) - 3n)| , then Sigma_(m =1)^(n) Delta_(m) is equal to

If (a)/(b)=(c)/(d)=(e)/(f) and (2a^(4)b^(2)+3a^(2)c^(2)-5e^(4)f)/(2b^(6)+3b^(2)d^(2)-5f^(5))=((a)/(b))^(n) then find the value of n.

If (x)/(y)=(1)/(3), then (x^(2)+y^(2))/(x^(2)-y^(2))=?(a)-(10)/(9) (b) (5)/(4)(c)-(5)/(4)(d)-(5)/(3)

NTA MOCK TESTS-NTA JEE MOCK TEST 47-MATHEMATICS
  1. If x=sin(2tan^(-1)3)and y=sin((1)/(2)tan^(-1)(4/3)), then

    Text Solution

    |

  2. A tower subtends an angle of 60^(@) at a point on the same level as th...

    Text Solution

    |

  3. The function f:(-oo, 1] rarr (0, e^(5)] defined as f(x)=e^(x^(3)+2) is

    Text Solution

    |

  4. The function f(x)=lim(nrarroo)((x-2)^(2n)-1)/((x-2)^(2n)+1) (AA n in N...

    Text Solution

    |

  5. If a and b are positive integers such that N=(a+ib)^(3)-107i (where N ...

    Text Solution

    |

  6. The area (in sq. units) bounded by the curve y={{:(x.":",x in ["0, 1"]...

    Text Solution

    |

  7. Let a variable line passing through a fixed point P in the first quadr...

    Text Solution

    |

  8. A differentiable function f(x) satisfies f(0)=0 and f(1)=sin1, then (...

    Text Solution

    |

  9. If I=int(dx)/(x^(3)(x^(8)+1)^(3//4))=(lambda(1+x^(8))^((1)/(4)))/(x^(2...

    Text Solution

    |

  10. The order of the differential equation of the family of parabolas symm...

    Text Solution

    |

  11. The harmonic mean of two positive numbers a and b is 4, their arithmet...

    Text Solution

    |

  12. The shortest distance between the lines (x-2)/(2)=(y-3)/(2)=(z-0)/(1) ...

    Text Solution

    |

  13. If x^(2a)y^(3b)=e^(5m), x^(3c)y^(4d)=e^(2n), Delta(1)=|(5m, 3b),(2n, 4...

    Text Solution

    |

  14. For the equation |x^(2)-2x-3|=b, which of the following statements is ...

    Text Solution

    |

  15. The converse of p rArr (q rArr r) is

    Text Solution

    |

  16. If 4x+3y-12=0 touches (x-p)^(2)+(y-p)^(2)=p^(2), then the sum of all t...

    Text Solution

    |

  17. If A and B are two events such that P(A)=(4)/(7), P(AnnB)=(3)/(28) and...

    Text Solution

    |

  18. If the number of terms free from radicals in the expansion of (7^((1)/...

    Text Solution

    |

  19. Let y=sqrt(xlog(e)x). If the value of (dy)/(dx) at x=e^(4) is k, then ...

    Text Solution

    |

  20. If the value of the integral I=int((pi)/(4))^((pi)/(3))" max "(sinx, t...

    Text Solution

    |