Home
Class 12
MATHS
If the value of the integral I=int((pi)/...

If the value of the integral `I=int_((pi)/(4))^((pi)/(3))" max "(sinx, tanx)dx` is equal to ln k, then the value of `k^(2)` is equa to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \max(\sin x, \tan x) \, dx \) and find the value of \( k^2 \) such that \( I = \ln k \), we will follow these steps: ### Step 1: Determine the maximum of \( \sin x \) and \( \tan x \) in the interval \( \left[ \frac{\pi}{4}, \frac{\pi}{3} \right] \) To find which function is greater in the interval, we can evaluate the values of \( \sin x \) and \( \tan x \) at the endpoints: - At \( x = \frac{\pi}{4} \): \[ \sin\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}, \quad \tan\left(\frac{\pi}{4}\right) = 1 \] Here, \( \tan\left(\frac{\pi}{4}\right) > \sin\left(\frac{\pi}{4}\right) \). - At \( x = \frac{\pi}{3} \): \[ \sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2}, \quad \tan\left(\frac{\pi}{3}\right) = \sqrt{3} \] Here, \( \tan\left(\frac{\pi}{3}\right) > \sin\left(\frac{\pi}{3}\right) \). Since \( \tan x \) is greater than \( \sin x \) at both endpoints and is continuous, we conclude that \( \tan x \) is the maximum function in the interval \( \left[ \frac{\pi}{4}, \frac{\pi}{3} \right] \). ### Step 2: Set up the integral Now, we can rewrite the integral as: \[ I = \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \tan x \, dx \] ### Step 3: Integrate \( \tan x \) The integral of \( \tan x \) is: \[ \int \tan x \, dx = -\ln|\cos x| + C \] Thus, we evaluate: \[ I = \left[-\ln|\cos x|\right]_{\frac{\pi}{4}}^{\frac{\pi}{3}} = -\ln|\cos\left(\frac{\pi}{3}\right)| + \ln|\cos\left(\frac{\pi}{4}\right)| \] ### Step 4: Calculate the values of \( \cos \) Now, we calculate: - \( \cos\left(\frac{\pi}{3}\right) = \frac{1}{2} \) - \( \cos\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} \) Substituting these values into the integral: \[ I = -\ln\left(\frac{1}{2}\right) + \ln\left(\frac{1}{\sqrt{2}}\right) \] \[ I = \ln(2) + \ln\left(\frac{1}{\sqrt{2}}\right) \] Using the property of logarithms: \[ I = \ln(2) - \frac{1}{2}\ln(2) = \ln\left(2^{1} \cdot 2^{-\frac{1}{2}}\right) = \ln\left(2^{\frac{1}{2}}\right) = \ln\left(\sqrt{2}\right) \] ### Step 5: Relate \( I \) to \( \ln k \) Since we have \( I = \ln k \), we can equate: \[ \ln k = \ln\left(\sqrt{2}\right) \] Thus, \( k = \sqrt{2} \). ### Step 6: Calculate \( k^2 \) Finally, we calculate \( k^2 \): \[ k^2 = (\sqrt{2})^2 = 2 \] ### Final Answer The value of \( k^2 \) is \( \boxed{2} \).
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 46

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 48

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_(pi//6)^(pi//2)((sinx-xcosx))/(x(x+sinx))dx is equal to

If the value of the integral I=int_(0)^(1)(dx)/(x+sqrt(1-x^(2))) is equal to (pi)/(k) , then the value of k is equal to

The value of the integral I=int_(0)^((pi)/(2))(cosx-sinx)/(10-x^(2)+(pix)/(2))dx is equal to

If the value of definite integral A=int_(0)^(10pi)[sinx]dx is equal to kpi , then the absolute value of k is equal to (where, [.] is the greatest integer function)

The value of the integral int_(pi//3)^(pi//3) (x sinx)/(cos^(2)x)dx , is

The value of the integral int_(0)^(pi//2)log |tanx| dx is

The value of the integral int_(0)^((pi)/4)(sqrt(tanx))/(sinx cos x) dx equals

The value of the integral int_(0)^(pi//4) (sinx+cosx)/(3+sin2x)dx ,is

The value of the integral int_(-(pi)/(2))^((pi)/(2))(x^(2)+ln((pi+x)/(pi-x)))cos xdx is

The value of the integral int_(-pi//2)^(pi//2) (x^(2)+ln'(pi+x)/(x-a)) cosx dx is

NTA MOCK TESTS-NTA JEE MOCK TEST 47-MATHEMATICS
  1. If x=sin(2tan^(-1)3)and y=sin((1)/(2)tan^(-1)(4/3)), then

    Text Solution

    |

  2. A tower subtends an angle of 60^(@) at a point on the same level as th...

    Text Solution

    |

  3. The function f:(-oo, 1] rarr (0, e^(5)] defined as f(x)=e^(x^(3)+2) is

    Text Solution

    |

  4. The function f(x)=lim(nrarroo)((x-2)^(2n)-1)/((x-2)^(2n)+1) (AA n in N...

    Text Solution

    |

  5. If a and b are positive integers such that N=(a+ib)^(3)-107i (where N ...

    Text Solution

    |

  6. The area (in sq. units) bounded by the curve y={{:(x.":",x in ["0, 1"]...

    Text Solution

    |

  7. Let a variable line passing through a fixed point P in the first quadr...

    Text Solution

    |

  8. A differentiable function f(x) satisfies f(0)=0 and f(1)=sin1, then (...

    Text Solution

    |

  9. If I=int(dx)/(x^(3)(x^(8)+1)^(3//4))=(lambda(1+x^(8))^((1)/(4)))/(x^(2...

    Text Solution

    |

  10. The order of the differential equation of the family of parabolas symm...

    Text Solution

    |

  11. The harmonic mean of two positive numbers a and b is 4, their arithmet...

    Text Solution

    |

  12. The shortest distance between the lines (x-2)/(2)=(y-3)/(2)=(z-0)/(1) ...

    Text Solution

    |

  13. If x^(2a)y^(3b)=e^(5m), x^(3c)y^(4d)=e^(2n), Delta(1)=|(5m, 3b),(2n, 4...

    Text Solution

    |

  14. For the equation |x^(2)-2x-3|=b, which of the following statements is ...

    Text Solution

    |

  15. The converse of p rArr (q rArr r) is

    Text Solution

    |

  16. If 4x+3y-12=0 touches (x-p)^(2)+(y-p)^(2)=p^(2), then the sum of all t...

    Text Solution

    |

  17. If A and B are two events such that P(A)=(4)/(7), P(AnnB)=(3)/(28) and...

    Text Solution

    |

  18. If the number of terms free from radicals in the expansion of (7^((1)/...

    Text Solution

    |

  19. Let y=sqrt(xlog(e)x). If the value of (dy)/(dx) at x=e^(4) is k, then ...

    Text Solution

    |

  20. If the value of the integral I=int((pi)/(4))^((pi)/(3))" max "(sinx, t...

    Text Solution

    |