Home
Class 12
MATHS
The maximum value of the expression sin ...

The maximum value of the expression `sin theta cos^(2)theta(AA theta in [0, pi])` is

A

`(2)/(3)`

B

`(2)/(sqrt3)`

C

`(2)/(3sqrt3)`

D

`(1)/(sqrt3)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum value of the expression \( f(\theta) = \sin \theta \cos^2 \theta \) for \( \theta \in [0, \pi] \), we will follow these steps: ### Step 1: Define the function Let \( f(\theta) = \sin \theta \cos^2 \theta \). ### Step 2: Differentiate the function To find the maximum value, we need to differentiate \( f(\theta) \) with respect to \( \theta \): \[ f'(\theta) = \frac{d}{d\theta} (\sin \theta \cos^2 \theta) \] Using the product rule, where \( u = \sin \theta \) and \( v = \cos^2 \theta \): \[ f'(\theta) = u'v + uv' \] Calculating \( u' \) and \( v' \): - \( u' = \cos \theta \) - \( v = \cos^2 \theta \) and \( v' = 2 \cos \theta (-\sin \theta) = -2 \cos \theta \sin \theta \) Thus, \[ f'(\theta) = \cos \theta \cos^2 \theta - 2 \sin^2 \theta \cos \theta \] Factoring out \( \cos \theta \): \[ f'(\theta) = \cos \theta (\cos^2 \theta - 2 \sin^2 \theta) \] ### Step 3: Set the derivative to zero To find critical points, set \( f'(\theta) = 0 \): \[ \cos \theta (\cos^2 \theta - 2 \sin^2 \theta) = 0 \] This gives us two cases: 1. \( \cos \theta = 0 \) 2. \( \cos^2 \theta - 2 \sin^2 \theta = 0 \) ### Step 4: Solve for \( \theta \) **Case 1:** \( \cos \theta = 0 \) - This occurs at \( \theta = \frac{\pi}{2} \). **Case 2:** \( \cos^2 \theta - 2 \sin^2 \theta = 0 \) - Using the identity \( \cos^2 \theta + \sin^2 \theta = 1 \), we can rewrite this as: \[ \cos^2 \theta = 2(1 - \cos^2 \theta) \] \[ 3 \cos^2 \theta = 2 \implies \cos^2 \theta = \frac{2}{3} \] Thus, \( \sin^2 \theta = 1 - \cos^2 \theta = 1 - \frac{2}{3} = \frac{1}{3} \). ### Step 5: Find corresponding \( \theta \) From \( \sin^2 \theta = \frac{1}{3} \): \[ \sin \theta = \frac{1}{\sqrt{3}} \quad (\text{since } \theta \in [0, \pi]) \] Using the Pythagorean identity to find \( \cos \theta \): \[ \cos \theta = \sqrt{\frac{2}{3}} \quad (\text{since } \cos \theta \geq 0 \text{ in } [0, \frac{\pi}{2}]) \] ### Step 6: Calculate maximum value Now we can calculate \( f(\theta) \) for both critical points: 1. For \( \theta = \frac{\pi}{2} \): \[ f\left(\frac{\pi}{2}\right) = \sin\left(\frac{\pi}{2}\right) \cos^2\left(\frac{\pi}{2}\right) = 1 \cdot 0 = 0 \] 2. For \( \sin \theta = \frac{1}{\sqrt{3}} \) and \( \cos^2 \theta = \frac{2}{3} \): \[ f(\theta) = \sin \theta \cos^2 \theta = \frac{1}{\sqrt{3}} \cdot \frac{2}{3} = \frac{2}{3\sqrt{3}} = \frac{2\sqrt{3}}{9} \] ### Conclusion Thus, the maximum value of \( f(\theta) = \sin \theta \cos^2 \theta \) for \( \theta \in [0, \pi] \) is: \[ \boxed{\frac{2\sqrt{3}}{9}} \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 48

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 50

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

Maximum value of the expression cos theta-sin^(2)theta-2,theta in R , is

Maximum value of the expression cos theta-sin^(2)theta-2,theta in R, is -

Maximum value of the expression cos theta- sin^(2)theta-2,theta in R ,is -

The maximum value of cos theta + sin theta , if

The maximum value of the expression F(theta) = (1)/(sin^(2)theta +3sinthetacostheta +5cos^(2)theta) is ______________.

The Maximum value of a sin theta+b cos theta is:

The maximum value of the expression (1)/(sin^(2)theta+3sin theta cos theta+5cos^(2)theta)

The maximum value of the expression (1)/(sin^(2)theta+3sin theta cos theta+5cos^(2)theta) is

The maximum value of the expression (1)/(sin^(2)theta+3sin theta cos theta+5cos^(2)theta) is

NTA MOCK TESTS-NTA JEE MOCK TEST 49-MATHEMATICS
  1. The value of lim(nrarroo)([x]+[2^(2)x]+[3^(2)x]+…+[n^(2)x])/(1^(2)+2^(...

    Text Solution

    |

  2. Let I=int(cos^(3)x)/(1+sin^(2)x)dx, then I is equal to (where c is the...

    Text Solution

    |

  3. The slope of the tangent (other than the x - axis) drawn from the orig...

    Text Solution

    |

  4. The maximum value of the expression sin theta cos^(2)theta(AA theta in...

    Text Solution

    |

  5. The area (in sq. units) bounded by y={{:(e^(x),":",xge0),(e^(-x),":",x...

    Text Solution

    |

  6. The slope of the tangent at any arbitrary point of a curve is twice th...

    Text Solution

    |

  7. If the system of equations 3x+y+z=1, 6x+3y+2z=1 and mux+lambday+3z=1 i...

    Text Solution

    |

  8. The probability of an event A is (4)/(5). The probability of an event ...

    Text Solution

    |

  9. Let veca, vecb and vecc be three vectors such that |veca|=2, |vecb|=1 ...

    Text Solution

    |

  10. The distance of the point (2, 3, 2) from the plane 3x+4y+4z=23 measure...

    Text Solution

    |

  11. Let the equations of the sides PQ, QR, RS and SP of a quadrilateral PQ...

    Text Solution

    |

  12. The locus of the point of intersection of the tangents at the extremit...

    Text Solution

    |

  13. Two straight lines having variable slopes m(1) and m(2) pass through t...

    Text Solution

    |

  14. For a complex number Z, if arg Z=(pi)/(4) and |Z+(1)/(Z)|=4, then the ...

    Text Solution

    |

  15. In a factory, workers work in three shifts, say shift 1, shift 2 and s...

    Text Solution

    |

  16. The value of a+b such that the inequality ale 5 cos theta+3cos (theta+...

    Text Solution

    |

  17. If the line y=-(7)/(2) is the directrix of the parabola x^(2)-ky+8=0, ...

    Text Solution

    |

  18. Let A be a non - singular square matrix such that A^(2)=A satisfying (...

    Text Solution

    |

  19. Let f(x)={{:(((1-cosx)/((2pi-x)^(2)))((sin^(2)x)/(log(1+4pi^(2)-4pix+x...

    Text Solution

    |

  20. If int(20)^(40)(sinx)/(sinx+sin(60+x))dx=k, then the value of (k)/(4) ...

    Text Solution

    |