Home
Class 12
MATHS
If the system of equations 3x+y+z=1, 6x+...

If the system of equations `3x+y+z=1, 6x+3y+2z=1` and `mux+lambday+3z=1` is inconsistent, then

A

`mu ne 9, lambda ne 5`

B

`mu ne 9, lambda=5`

C

`mu=9, lambda=5`

D

`mu=9, lambda ne 5`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the values of \( \mu \) and \( \lambda \) such that the system of equations is inconsistent, we will follow these steps: ### Step 1: Write down the equations We have the following system of equations: 1. \( 3x + y + z = 1 \) (Equation 1) 2. \( 6x + 3y + 2z = 1 \) (Equation 2) 3. \( \mu x + \lambda y + 3z = 1 \) (Equation 3) ### Step 2: Form the coefficient matrix and calculate the determinant The coefficient matrix for the system is: \[ \begin{bmatrix} 3 & 1 & 1 \\ 6 & 3 & 2 \\ \mu & \lambda & 3 \end{bmatrix} \] We denote the determinant of this matrix as \( \Delta \). For the system to be inconsistent, we need \( \Delta = 0 \). ### Step 3: Calculate \( \Delta \) The determinant \( \Delta \) can be calculated using the formula for the determinant of a 3x3 matrix: \[ \Delta = a(ei - fh) - b(di - fg) + c(dh - eg) \] Substituting the values from our matrix: \[ \Delta = 3(3 \cdot 3 - 2 \cdot \lambda) - 1(6 \cdot 3 - 2 \cdot \mu) + 1(6 \lambda - 3 \mu) \] Calculating each term: \[ = 3(9 - 2\lambda) - (18 - 2\mu) + (6\lambda - 3\mu) \] \[ = 27 - 6\lambda - 18 + 2\mu + 6\lambda - 3\mu \] \[ = 9 - \mu - \lambda \] ### Step 4: Set \( \Delta = 0 \) For the system to be inconsistent: \[ 9 - \mu - \lambda = 0 \] This implies: \[ \mu + \lambda = 9 \quad (1) \] ### Step 5: Calculate \( \Delta_1 \) Next, we calculate \( \Delta_1 \) by replacing the first column with the constants from the right-hand side: \[ \Delta_1 = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 3 & 2 \\ 1 & \lambda & 3 \end{vmatrix} \] Calculating this determinant: \[ = 1(3 \cdot 3 - 2 \cdot \lambda) - 1(1 \cdot 3 - 2 \cdot 1) + 1(1 \cdot \lambda - 3 \cdot 1) \] \[ = 3 \cdot 3 - 2\lambda - (3 - 2) + (\lambda - 3) \] \[ = 9 - 2\lambda - 1 + \lambda - 3 \] \[ = 5 - \lambda \] ### Step 6: Calculate \( \Delta_2 \) Now we calculate \( \Delta_2 \) by replacing the second column: \[ \Delta_2 = \begin{vmatrix} 3 & 1 & 1 \\ 6 & 1 & 2 \\ \mu & 1 & 3 \end{vmatrix} \] Calculating this determinant: \[ = 3(1 \cdot 3 - 2 \cdot 1) - 1(6 \cdot 3 - 2 \mu) + 1(6 \cdot 1 - 1 \cdot \mu) \] \[ = 3(3 - 2) - (18 - 2\mu) + (6 - \mu) \] \[ = 3 - 18 + 2\mu + 6 - \mu \] \[ = -9 + \mu \] ### Step 7: Calculate \( \Delta_3 \) Finally, we calculate \( \Delta_3 \) by replacing the third column: \[ \Delta_3 = \begin{vmatrix} 3 & 1 & 1 \\ 6 & 3 & 1 \\ \mu & \lambda & 1 \end{vmatrix} \] Calculating this determinant: \[ = 3(3 \cdot 1 - 1 \cdot \lambda) - 1(6 \cdot 1 - 1 \cdot \mu) + 1(6 \cdot \lambda - 3 \cdot \mu) \] \[ = 3(3 - \lambda) - (6 - \mu) + (6\lambda - 3\mu) \] \[ = 9 - 3\lambda - 6 + \mu + 6\lambda - 3\mu \] \[ = 3 + 3\lambda - 2\mu \] ### Step 8: Conditions for inconsistency For the system to be inconsistent, we need: 1. \( \Delta = 0 \) which gives us \( \mu + \lambda = 9 \) 2. At least one of \( \Delta_1, \Delta_2, \Delta_3 \) must be non-zero. From the calculations: - \( \Delta_1 = 5 - \lambda \) - \( \Delta_2 = -9 + \mu \) - \( \Delta_3 = 3 + 3\lambda - 2\mu \) ### Step 9: Solve for \( \mu \) From \( \Delta_2 = 0 \): \[ -9 + \mu = 0 \implies \mu = 9 \] ### Step 10: Substitute \( \mu \) into \( (1) \) Substituting \( \mu = 9 \) into \( \mu + \lambda = 9 \): \[ 9 + \lambda = 9 \implies \lambda = 0 \] ### Conclusion Thus, the values of \( \mu \) and \( \lambda \) that make the system inconsistent are: \[ \mu = 9, \quad \lambda = 0 \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 48

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 50

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If the system of equations 3x-y+4z=3,x+2y-3z=-2, and 6x+5y+ lambda z =-3 has infinite number of solutions ,then lambda=

If the system of equations 3x-y+4z=3,x+2y-3z=-2 and ,6x+5y+ lambda z=-3 has infinite number of solutions then lambda =

The system of equation 3x + 4y + 5z = mu x + 2y + 3z = 1 4x + 4y + 4z = delta is inconsistent, then ( delta,mu ) can be

If the system of equations x+2y-3z=1,(P+2)z=3,(2P+1)y+z=2 is inconsistent then the value of P is

The system of equations x+y+z=6,x+2y+3z=10,x+2y+lambda z=k is inconsistent if lambda=.....k!=.....

The system of equations x+y+z=6,x+2y+3z=10,x+2y+lambda z=k is inconsistent if lambda=......,k!=.......

For the system of equations 3x+y=1,x-2y=5 and x-y+3z+3=0, the value of z is

For the system of equation 3x + y =1, x - 2y =5 and x-y + 3z +3 =0 , the value of z is

NTA MOCK TESTS-NTA JEE MOCK TEST 49-MATHEMATICS
  1. The value of lim(nrarroo)([x]+[2^(2)x]+[3^(2)x]+…+[n^(2)x])/(1^(2)+2^(...

    Text Solution

    |

  2. Let I=int(cos^(3)x)/(1+sin^(2)x)dx, then I is equal to (where c is the...

    Text Solution

    |

  3. The slope of the tangent (other than the x - axis) drawn from the orig...

    Text Solution

    |

  4. The maximum value of the expression sin theta cos^(2)theta(AA theta in...

    Text Solution

    |

  5. The area (in sq. units) bounded by y={{:(e^(x),":",xge0),(e^(-x),":",x...

    Text Solution

    |

  6. The slope of the tangent at any arbitrary point of a curve is twice th...

    Text Solution

    |

  7. If the system of equations 3x+y+z=1, 6x+3y+2z=1 and mux+lambday+3z=1 i...

    Text Solution

    |

  8. The probability of an event A is (4)/(5). The probability of an event ...

    Text Solution

    |

  9. Let veca, vecb and vecc be three vectors such that |veca|=2, |vecb|=1 ...

    Text Solution

    |

  10. The distance of the point (2, 3, 2) from the plane 3x+4y+4z=23 measure...

    Text Solution

    |

  11. Let the equations of the sides PQ, QR, RS and SP of a quadrilateral PQ...

    Text Solution

    |

  12. The locus of the point of intersection of the tangents at the extremit...

    Text Solution

    |

  13. Two straight lines having variable slopes m(1) and m(2) pass through t...

    Text Solution

    |

  14. For a complex number Z, if arg Z=(pi)/(4) and |Z+(1)/(Z)|=4, then the ...

    Text Solution

    |

  15. In a factory, workers work in three shifts, say shift 1, shift 2 and s...

    Text Solution

    |

  16. The value of a+b such that the inequality ale 5 cos theta+3cos (theta+...

    Text Solution

    |

  17. If the line y=-(7)/(2) is the directrix of the parabola x^(2)-ky+8=0, ...

    Text Solution

    |

  18. Let A be a non - singular square matrix such that A^(2)=A satisfying (...

    Text Solution

    |

  19. Let f(x)={{:(((1-cosx)/((2pi-x)^(2)))((sin^(2)x)/(log(1+4pi^(2)-4pix+x...

    Text Solution

    |

  20. If int(20)^(40)(sinx)/(sinx+sin(60+x))dx=k, then the value of (k)/(4) ...

    Text Solution

    |