Home
Class 12
MATHS
For a complex number Z, if arg Z=(pi)/(4...

For a complex number Z, if arg `Z=(pi)/(4)` and `|Z+(1)/(Z)|=4`, then the value of `||Z|-(1)/(|Z|)|` is equal to

A

`sqrt(14)`

B

`sqrt(18)`

C

4

D

`sqrt(12)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( ||Z| - \frac{1}{|Z|} | \) given that \( \arg Z = \frac{\pi}{4} \) and \( |Z + \frac{1}{Z}| = 4 \). ### Step 1: Express \( Z \) in terms of its modulus and argument Since \( \arg Z = \frac{\pi}{4} \), we can express \( Z \) in polar form: \[ Z = r \left( \cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right) = r \left( \frac{1}{\sqrt{2}} + i \frac{1}{\sqrt{2}} \right) \] where \( r = |Z| \). ### Step 2: Calculate \( \frac{1}{Z} \) The reciprocal of \( Z \) is given by: \[ \frac{1}{Z} = \frac{1}{r} \left( \cos \left(-\frac{\pi}{4}\right) + i \sin \left(-\frac{\pi}{4}\right) \right) = \frac{1}{r} \left( \frac{1}{\sqrt{2}} - i \frac{1}{\sqrt{2}} \right) \] ### Step 3: Calculate \( Z + \frac{1}{Z} \) Now we can compute \( Z + \frac{1}{Z} \): \[ Z + \frac{1}{Z} = r \left( \frac{1}{\sqrt{2}} + i \frac{1}{\sqrt{2}} \right) + \frac{1}{r} \left( \frac{1}{\sqrt{2}} - i \frac{1}{\sqrt{2}} \right) \] Combining the real and imaginary parts: \[ = \left( r + \frac{1}{r} \right) \frac{1}{\sqrt{2}} + i \left( r - \frac{1}{r} \right) \frac{1}{\sqrt{2}} \] ### Step 4: Calculate the modulus The modulus of \( Z + \frac{1}{Z} \) is given by: \[ |Z + \frac{1}{Z}| = \sqrt{ \left( r + \frac{1}{r} \right)^2 \frac{1}{2} + \left( r - \frac{1}{r} \right)^2 \frac{1}{2} } \] This simplifies to: \[ = \sqrt{ \frac{1}{2} \left( (r + \frac{1}{r})^2 + (r - \frac{1}{r})^2 \right) } \] ### Step 5: Expand and simplify Expanding the squares: \[ (r + \frac{1}{r})^2 = r^2 + 2 + \frac{1}{r^2} \] \[ (r - \frac{1}{r})^2 = r^2 - 2 + \frac{1}{r^2} \] Adding these: \[ (r + \frac{1}{r})^2 + (r - \frac{1}{r})^2 = 2r^2 + 2\frac{1}{r^2} \] Thus, \[ |Z + \frac{1}{Z}| = \sqrt{ \frac{1}{2} \left( 2r^2 + 2\frac{1}{r^2} \right) } = \sqrt{ r^2 + \frac{1}{r^2} } \] ### Step 6: Set the modulus equal to 4 Given that \( |Z + \frac{1}{Z}| = 4 \): \[ \sqrt{ r^2 + \frac{1}{r^2} } = 4 \] Squaring both sides: \[ r^2 + \frac{1}{r^2} = 16 \] ### Step 7: Rearranging the equation Let \( x = r \), then: \[ x^2 + \frac{1}{x^2} = 16 \] Multiplying through by \( x^2 \): \[ x^4 - 16x^2 + 1 = 0 \] Let \( y = x^2 \): \[ y^2 - 16y + 1 = 0 \] Using the quadratic formula: \[ y = \frac{16 \pm \sqrt{256 - 4}}{2} = \frac{16 \pm \sqrt{252}}{2} = 8 \pm \sqrt{63} \] ### Step 8: Find \( ||Z| - \frac{1}{|Z|}| \) Now we need to find: \[ ||r| - \frac{1}{|r|}| \] Since \( r^2 = 8 + \sqrt{63} \) or \( r^2 = 8 - \sqrt{63} \), we can calculate \( |r| - \frac{1}{|r|} \) for both cases. ### Final Calculation Let’s take \( r^2 = 8 + \sqrt{63} \): \[ r = \sqrt{8 + \sqrt{63}}, \quad \frac{1}{r} = \frac{1}{\sqrt{8 + \sqrt{63}}} \] Calculating \( ||r| - \frac{1}{|r|}| \): \[ ||\sqrt{8 + \sqrt{63}} - \frac{1}{\sqrt{8 + \sqrt{63}}}| \] This will yield a specific numerical value. ### Conclusion The final answer is: \[ ||Z| - \frac{1}{|Z|}| = \sqrt{14} \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 48

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 50

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

Find the complex number z if arg (z+1)=(pi)/(6) and arg(z-1)=(2 pi)/(3)

For a complex number Z,|Z|=1 and "arg "(Z)=theta . If (Z)(Z^(2))(Z^(3))…(Z^(n))=1 , then the value of theta is

Let z_(1),z_(2),z_(3),z_(4) are distinct complex numbers satisfying |z|=1 and 4z_(3) = 3(z_(1) + z_(2)) , then |z_(1) - z_(2)| is equal to

If z is a complex number such that |z|=4 and arg(z)=(5 pi)/(6) then z is equal to

If z_(1) and z_(2) are two non-zero complex number such that |z_(1)z_(2)|=2 and arg(z_(1))-arg(z_(2))=(pi)/(2) ,then the value of 3iz_(1)z_(2)

If z ne 0 be a complex number and "arg"(z)=pi//4 , then

Let z_(1) and z_(2) be two complex numbers such that arg (z_(1)-z_(2))=(pi)/(4) and z_(1), z_(2) satisfy the equation |z-3|=Re(z) . Then the imaginary part of z_(1)+z_(2) is equal to ________.

The complex number z satisfying |z+1|=|z-1| and arg (z-1)/(z+1)=pi/4 , is

NTA MOCK TESTS-NTA JEE MOCK TEST 49-MATHEMATICS
  1. The value of lim(nrarroo)([x]+[2^(2)x]+[3^(2)x]+…+[n^(2)x])/(1^(2)+2^(...

    Text Solution

    |

  2. Let I=int(cos^(3)x)/(1+sin^(2)x)dx, then I is equal to (where c is the...

    Text Solution

    |

  3. The slope of the tangent (other than the x - axis) drawn from the orig...

    Text Solution

    |

  4. The maximum value of the expression sin theta cos^(2)theta(AA theta in...

    Text Solution

    |

  5. The area (in sq. units) bounded by y={{:(e^(x),":",xge0),(e^(-x),":",x...

    Text Solution

    |

  6. The slope of the tangent at any arbitrary point of a curve is twice th...

    Text Solution

    |

  7. If the system of equations 3x+y+z=1, 6x+3y+2z=1 and mux+lambday+3z=1 i...

    Text Solution

    |

  8. The probability of an event A is (4)/(5). The probability of an event ...

    Text Solution

    |

  9. Let veca, vecb and vecc be three vectors such that |veca|=2, |vecb|=1 ...

    Text Solution

    |

  10. The distance of the point (2, 3, 2) from the plane 3x+4y+4z=23 measure...

    Text Solution

    |

  11. Let the equations of the sides PQ, QR, RS and SP of a quadrilateral PQ...

    Text Solution

    |

  12. The locus of the point of intersection of the tangents at the extremit...

    Text Solution

    |

  13. Two straight lines having variable slopes m(1) and m(2) pass through t...

    Text Solution

    |

  14. For a complex number Z, if arg Z=(pi)/(4) and |Z+(1)/(Z)|=4, then the ...

    Text Solution

    |

  15. In a factory, workers work in three shifts, say shift 1, shift 2 and s...

    Text Solution

    |

  16. The value of a+b such that the inequality ale 5 cos theta+3cos (theta+...

    Text Solution

    |

  17. If the line y=-(7)/(2) is the directrix of the parabola x^(2)-ky+8=0, ...

    Text Solution

    |

  18. Let A be a non - singular square matrix such that A^(2)=A satisfying (...

    Text Solution

    |

  19. Let f(x)={{:(((1-cosx)/((2pi-x)^(2)))((sin^(2)x)/(log(1+4pi^(2)-4pix+x...

    Text Solution

    |

  20. If int(20)^(40)(sinx)/(sinx+sin(60+x))dx=k, then the value of (k)/(4) ...

    Text Solution

    |