Home
Class 12
MATHS
The value of tan^(-1)[(sqrt(1-sinx)+sqrt...

The value of `tan^(-1)[(sqrt(1-sinx)+sqrt(1+sinx))/(sqrt(1-sinx)-sqrt(1+sinx))](AA x in [0, (pi)/(2)])` is equal to

A

`(x)/(2)-(pi)/(2)`

B

`(x)/(2)+(pi)/(2)`

C

`(x)/(2)-pi`

D

`(pi)/(2)-(x)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ y = \tan^{-1}\left(\frac{\sqrt{1 - \sin x} + \sqrt{1 + \sin x}}{\sqrt{1 - \sin x} - \sqrt{1 + \sin x}}\right) \] **Step 1: Simplifying the expression inside the arctangent** We can start by simplifying the expression inside the arctangent. We know that: \[ 1 - \sin x = \cos^2\left(\frac{x}{2}\right) \] \[ 1 + \sin x = \cos^2\left(\frac{x}{2}\right) + 2\sin\left(\frac{x}{2}\right)\cos\left(\frac{x}{2}\right) = \left(\cos\left(\frac{x}{2}\right) + \sin\left(\frac{x}{2}\right)\right)^2 \] Thus, we can write: \[ \sqrt{1 - \sin x} = \sqrt{\cos^2\left(\frac{x}{2}\right)} = \cos\left(\frac{x}{2}\right) \] \[ \sqrt{1 + \sin x} = \sqrt{\left(\cos\left(\frac{x}{2}\right) + \sin\left(\frac{x}{2}\right)\right)^2} = \cos\left(\frac{x}{2}\right) + \sin\left(\frac{x}{2}\right) \] Now substituting these into the expression gives: \[ y = \tan^{-1}\left(\frac{\cos\left(\frac{x}{2}\right) + \left(\cos\left(\frac{x}{2}\right) + \sin\left(\frac{x}{2}\right)\right)}{\cos\left(\frac{x}{2}\right) - \left(\cos\left(\frac{x}{2}\right) + \sin\left(\frac{x}{2}\right)\right)}\right) \] **Step 2: Further simplification** This simplifies to: \[ y = \tan^{-1}\left(\frac{2\cos\left(\frac{x}{2}\right) + \sin\left(\frac{x}{2}\right)}{-\sin\left(\frac{x}{2}\right)}\right) \] This can be rewritten as: \[ y = \tan^{-1}\left(-\frac{2\cos\left(\frac{x}{2}\right) + \sin\left(\frac{x}{2}\right)}{\sin\left(\frac{x}{2}\right)}\right) \] **Step 3: Using properties of tangent** Using the property of tangent, we can express this as: \[ y = -\tan^{-1}\left(\frac{2\cos\left(\frac{x}{2}\right)}{\sin\left(\frac{x}{2}\right)} + 1\right) \] **Step 4: Final simplification** This leads to: \[ y = -\left(\frac{\pi}{2} - \frac{x}{2}\right) = \frac{x}{2} - \frac{\pi}{2} \] Thus, we conclude that: \[ y = \frac{\pi}{2} - \frac{x}{2} \] **Final Result:** The value of \( y \) is: \[ \frac{\pi}{2} - \frac{x}{2} \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 49

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 51

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

The value of tan^(-1){(sqrt(1-sinx)+sqrt(1+sinx))/(sqrt(1-sinx)-sqrt(1+sinx))} is : ((pi)/(2) lt x lt pi)

The value of cot^(-1){(sqrt(1-sinx)+sqrt(1+sinx))/(sqrt(1-sinx) -sqrt(1+sinx))} is (0 lt x lt (pi)/(2))

cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=(x)/(2), x in (0,(pi)/(4))

The value of cot^(-1){(sqrt(1-sinx)+sqrt(1+sinx))/(sqrt(1-sinx)-sqrt(1+sinx))} , where (pi)/2ltxltpi , is

int tan^(-1)sqrt((1-sinx)/(1+sinx))dx.

value of int_0^1cot^-1((sqrt(1+sinx)+(sqrt(1-sinx)))/((sqrt(1+sinx)-(sqrt(1-sinx)))))dx

If y="tan"^(-1)((sqrt(1+sinx)+sqrt(1-sinx)))/((sqrt(1+sinx)-sqrt(1-sinx)))," find "(dy)/(dx).

NTA MOCK TESTS-NTA JEE MOCK TEST 50-MATHEMATICS
  1. The equation of the circle which passes through the point A(0, 5) and ...

    Text Solution

    |

  2. A function f:ZrarrZ is defined as f(n)={{:(n+1,n in " odd integer"),((...

    Text Solution

    |

  3. The value of tan^(-1)[(sqrt(1-sinx)+sqrt(1+sinx))/(sqrt(1-sinx)-sqrt(1...

    Text Solution

    |

  4. The negation of the statement ''If I will become famous then I will op...

    Text Solution

    |

  5. Let a continous and differentiable function f(x) is such that f(x) and...

    Text Solution

    |

  6. The value of int(1)/((2x-1)sqrt(x^(2)-x))dx is equal to (where c is th...

    Text Solution

    |

  7. Find the equation of the tangent to the parabola y^2 = 4x + 5 which is...

    Text Solution

    |

  8. The area of the smaller part of the circle x^(2)+y^(2)=2 cut off by th...

    Text Solution

    |

  9. If a and b are arbitrary constants, then the order and degree of the d...

    Text Solution

    |

  10. veca, vecb and vecc are coplanar unit vectors. A unit vector vecd is p...

    Text Solution

    |

  11. Direction cosines to the normal to the plane containing the lines (x)/...

    Text Solution

    |

  12. If alpha, beta and gamma are the roots of the equation x^(3)-3x^(2)+4x...

    Text Solution

    |

  13. For the equation (1-ix)/(1+ix)=sin.(pi)/(7)-i cos.(pi)/(7), if x=tan((...

    Text Solution

    |

  14. Shubham has 75% chance of attending the annual meet. Shikha has a 90% ...

    Text Solution

    |

  15. Let A and B be two matrices such that the order of A is 5xx7. If A^(T)...

    Text Solution

    |

  16. The value of lim(xrarroo)(e^(x+1)log(x^(3)e^(-x)+1))/(sin^(3)(2x)) is ...

    Text Solution

    |

  17. A continous function f(x) is such that f(3x)=2f(x), AA x in R. If int(...

    Text Solution

    |

  18. The sum of 50 terms of the series 3+7+13+21+31+43+…. is equal to S(50)...

    Text Solution

    |

  19. If theta is the angle between the pair of tangents drawn to the ellips...

    Text Solution

    |

  20. The mean and variance of 5 observations are 6 and 6.8 respectively. If...

    Text Solution

    |