Home
Class 12
MATHS
veca, vecb and vecc are coplanar unit ve...

`veca, vecb and vecc` are coplanar unit vectors. A unit vector `vecd` is perpendicular to them. If `(vecaxxvecb)xx(vecc xx vecb)=(3)/(26)hati-(2)/(13)hatj+(6)/(13)hatk`
and the angle between `veca and vecb` is `30^(@)`, then `vecc` is equal to

A

`(3)/(13)hati-(4)/(13)hatj+(12)/(13)hatk`

B

`(2)/(7)hati-(3)/(7)hatj+(6)/(7)hatk`

C

`3hati-4hatj+12hatk`

D

`(1)/(sqrt3)hati-(1)/(sqrt3)hatj+(1)/(sqrt3)hatk`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to find the vector \(\vec{c}\) given the conditions of the problem. ### Step 1: Understand the Given Information We know that \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\) are coplanar unit vectors, and \(\vec{d}\) is a unit vector that is perpendicular to all three. We are given the expression: \[ (\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{b}) = \frac{3}{26} \hat{i} - \frac{2}{13} \hat{j} + \frac{6}{13} \hat{k} \] and the angle between \(\vec{a}\) and \(\vec{b}\) is \(30^\circ\). ### Step 2: Use the Cross Product Identity Using the vector triple product identity: \[ \vec{x} \times (\vec{y} \times \vec{z}) = (\vec{x} \cdot \vec{z}) \vec{y} - (\vec{x} \cdot \vec{y}) \vec{z} \] we can rewrite: \[ (\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{b}) = (\vec{a} \cdot \vec{b}) \vec{c} - (\vec{a} \cdot \vec{c}) \vec{b} \] ### Step 3: Calculate \(\vec{a} \cdot \vec{b}\) Since the angle between \(\vec{a}\) and \(\vec{b}\) is \(30^\circ\), we can calculate: \[ \vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos(30^\circ) = 1 \cdot 1 \cdot \frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{2} \] ### Step 4: Substitute into the Equation Substituting the dot product into the equation gives: \[ \frac{\sqrt{3}}{2} \vec{c} - (\vec{a} \cdot \vec{c}) \vec{b} = \frac{3}{26} \hat{i} - \frac{2}{13} \hat{j} + \frac{6}{13} \hat{k} \] ### Step 5: Isolate \(\vec{c}\) Rearranging gives: \[ \frac{\sqrt{3}}{2} \vec{c} = \frac{3}{26} \hat{i} - \frac{2}{13} \hat{j} + \frac{6}{13} \hat{k} + (\vec{a} \cdot \vec{c}) \vec{b} \] ### Step 6: Normalize the Expression Since \(\vec{c}\) is a unit vector, we can express it as: \[ \vec{c} = k \left( \frac{3}{26} \hat{i} - \frac{2}{13} \hat{j} + \frac{6}{13} \hat{k} \right) \] where \(k\) is a scalar that we need to determine. ### Step 7: Find Magnitude The magnitude of the right-hand side must equal 1 (since \(\vec{c}\) is a unit vector): \[ k \sqrt{\left( \frac{3}{26} \right)^2 + \left( -\frac{2}{13} \right)^2 + \left( \frac{6}{13} \right)^2} = 1 \] Calculating the magnitude: \[ \sqrt{\left( \frac{3}{26} \right)^2 + \left( -\frac{2}{13} \right)^2 + \left( \frac{6}{13} \right)^2} = \sqrt{\frac{9}{676} + \frac{4}{169} + \frac{36}{169}} = \sqrt{\frac{9}{676} + \frac{40}{169}} = \sqrt{\frac{9 + 160}{676}} = \sqrt{\frac{169}{676}} = \frac{13}{26} = \frac{1}{2} \] ### Step 8: Solve for \(k\) Thus: \[ k \cdot \frac{1}{2} = 1 \implies k = 2 \] ### Step 9: Find \(\vec{c}\) Substituting \(k\) back gives: \[ \vec{c} = 2 \left( \frac{3}{26} \hat{i} - \frac{2}{13} \hat{j} + \frac{6}{13} \hat{k} \right) = \frac{6}{26} \hat{i} - \frac{4}{13} \hat{j} + \frac{12}{13} \hat{k} \] Simplifying this gives: \[ \vec{c} = \frac{3}{13} \hat{i} - \frac{4}{13} \hat{j} + \frac{12}{13} \hat{k} \] ### Final Answer Thus, the vector \(\vec{c}\) is: \[ \vec{c} = \frac{3}{13} \hat{i} - \frac{4}{13} \hat{j} + \frac{12}{13} \hat{k} \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 49

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 51

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

Unit vectors veca, vecb, vecc are coplanar. A unit vector vecd is perpendicular to them.If (vecaxxvecb)xx(veccxxvecd)=1/6hati-1/3hatj+1/3hatjk and the angle between veca and vecb is 30^(@) , then vecc is/are

veca ,vecb and vecc are unimdular and coplanar. A unit vector vecd is perpendicualt to them , (veca xx vecb) xx (vecc xx vecd) = 1/6 hati - 1/3 hatj + 1/3 hatk , and the angle between veca and vecb is 30^(@) then vecc is

If veca, vecb, vecc, vecd are coplanar vectors, then (vecaxxvecb)xx(veccxxvecd)=

If veca, vecb and vecc 1 are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals

If veca, vecb and vecc 1 are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals

If veca , vecb and vecc are non- coplanar vectors and veca xx vecc is perpendicular to veca xx (vecb xx vecc) , then the value of [ veca xx ( vecb xx vecc)] xx vecc is equal to

If the vectors veca, vecb, vecc and vecd are coplanar vectors, then (vecaxxvecb)xx(veccxxvecd) is equal to

Let veca,vecb,vecc be three non coplanar and vecd be a vector which is perpendicular to veca + vecb + vecc . If vecd = xvecb xx vecc + yvecc xx veca + zveca xx vecb the-

NTA MOCK TESTS-NTA JEE MOCK TEST 50-MATHEMATICS
  1. The equation of the circle which passes through the point A(0, 5) and ...

    Text Solution

    |

  2. A function f:ZrarrZ is defined as f(n)={{:(n+1,n in " odd integer"),((...

    Text Solution

    |

  3. The value of tan^(-1)[(sqrt(1-sinx)+sqrt(1+sinx))/(sqrt(1-sinx)-sqrt(1...

    Text Solution

    |

  4. The negation of the statement ''If I will become famous then I will op...

    Text Solution

    |

  5. Let a continous and differentiable function f(x) is such that f(x) and...

    Text Solution

    |

  6. The value of int(1)/((2x-1)sqrt(x^(2)-x))dx is equal to (where c is th...

    Text Solution

    |

  7. Find the equation of the tangent to the parabola y^2 = 4x + 5 which is...

    Text Solution

    |

  8. The area of the smaller part of the circle x^(2)+y^(2)=2 cut off by th...

    Text Solution

    |

  9. If a and b are arbitrary constants, then the order and degree of the d...

    Text Solution

    |

  10. veca, vecb and vecc are coplanar unit vectors. A unit vector vecd is p...

    Text Solution

    |

  11. Direction cosines to the normal to the plane containing the lines (x)/...

    Text Solution

    |

  12. If alpha, beta and gamma are the roots of the equation x^(3)-3x^(2)+4x...

    Text Solution

    |

  13. For the equation (1-ix)/(1+ix)=sin.(pi)/(7)-i cos.(pi)/(7), if x=tan((...

    Text Solution

    |

  14. Shubham has 75% chance of attending the annual meet. Shikha has a 90% ...

    Text Solution

    |

  15. Let A and B be two matrices such that the order of A is 5xx7. If A^(T)...

    Text Solution

    |

  16. The value of lim(xrarroo)(e^(x+1)log(x^(3)e^(-x)+1))/(sin^(3)(2x)) is ...

    Text Solution

    |

  17. A continous function f(x) is such that f(3x)=2f(x), AA x in R. If int(...

    Text Solution

    |

  18. The sum of 50 terms of the series 3+7+13+21+31+43+…. is equal to S(50)...

    Text Solution

    |

  19. If theta is the angle between the pair of tangents drawn to the ellips...

    Text Solution

    |

  20. The mean and variance of 5 observations are 6 and 6.8 respectively. If...

    Text Solution

    |