Home
Class 12
MATHS
For the equation (1-ix)/(1+ix)=sin.(pi)/...

For the equation `(1-ix)/(1+ix)=sin.(pi)/(7)-i cos.(pi)/(7)`, if `x=tan((kpi)/(28))`, then the value of k can be (where `i^(2)=-1`)

A

1

B

3

C

5

D

9

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{1 - ix}{1 + ix} = \sin\left(\frac{\pi}{7}\right) - i \cos\left(\frac{\pi}{7}\right), \] where \( x = \tan\left(\frac{k\pi}{28}\right) \), we will follow these steps: ### Step 1: Rationalize the left-hand side We start with the left-hand side: \[ Z = \frac{1 - ix}{1 + ix}. \] To rationalize, we multiply the numerator and denominator by the conjugate of the denominator: \[ Z = \frac{(1 - ix)(1 - ix)}{(1 + ix)(1 - ix)} = \frac{(1 - ix)^2}{1 + x^2}. \] ### Step 2: Expand the numerator Now we expand the numerator: \[ (1 - ix)^2 = 1 - 2ix + (ix)^2 = 1 - 2ix - x^2. \] Thus, we have: \[ Z = \frac{1 - x^2 - 2ix}{1 + x^2}. \] ### Step 3: Separate real and imaginary parts Now, we can separate the real and imaginary parts: \[ Z = \frac{1 - x^2}{1 + x^2} - i \frac{2x}{1 + x^2}. \] ### Step 4: Compare with the right-hand side We compare this with the right-hand side: \[ \sin\left(\frac{\pi}{7}\right) - i \cos\left(\frac{\pi}{7}\right). \] From this, we can equate the real and imaginary parts: 1. Real part: \[ \frac{1 - x^2}{1 + x^2} = \sin\left(\frac{\pi}{7}\right). \] 2. Imaginary part: \[ \frac{2x}{1 + x^2} = \cos\left(\frac{\pi}{7}\right). \] ### Step 5: Solve the equations From the first equation, we can rearrange it: \[ 1 - x^2 = \sin\left(\frac{\pi}{7}\right)(1 + x^2). \] This simplifies to: \[ 1 - x^2 = \sin\left(\frac{\pi}{7}\right) + \sin\left(\frac{\pi}{7}\right)x^2, \] which leads to: \[ (1 - \sin\left(\frac{\pi}{7}\right)) = x^2(1 + \sin\left(\frac{\pi}{7}\right)). \] Thus, we have: \[ x^2 = \frac{1 - \sin\left(\frac{\pi}{7}\right)}{1 + \sin\left(\frac{\pi}{7}\right)}. \] ### Step 6: Substitute \( x = \tan\left(\frac{k\pi}{28}\right) \) Now substituting \( x = \tan\left(\frac{k\pi}{28}\right) \): \[ \tan^2\left(\frac{k\pi}{28}\right) = \frac{1 - \sin\left(\frac{\pi}{7}\right)}{1 + \sin\left(\frac{\pi}{7}\right)}. \] ### Step 7: Use the double angle identity Using the identity \( \tan^2(\theta) = \frac{1 - \cos(2\theta)}{\cos(2\theta)} \): We can express \( \tan^2\left(\frac{k\pi}{28}\right) \) in terms of sine and cosine. ### Step 8: Find \( k \) After solving the above equations, we can find the value of \( k \) that satisfies the original equation. From the comparison of angles, we can deduce that: \[ \frac{k\pi}{28} = \frac{5\pi}{28} \implies k = 5. \] ### Final Answer Thus, the value of \( k \) can be: \[ \boxed{5}. \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 49

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 51

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

cos^(-1)(sin((pi)/(7)))

If (3-tan^(2)""(pi)/(7))/(1-tan^(2)""(pi)/(7))=kcos""(pi)/(7) then the value of k is

If z=6(cos(2(pi)/(7))+i sin(2(pi)/(7))) and w=3(cos(5(pi)/(7))+i sin(5(pi)/(7))) then what is the value of (z)/(w)

cos(cos^(-1)cos((8 pi)/(7))+tan^(-1)tan(8(pi)/(7))) has the value equal to -

sum_(m=1)^(32)m[sum_(k=1)^(6)sin2k(pi)/(7)-i cos2k(pi)/(7)]

prod_ (k = 1) ^ (6) (sin ((2k pi) / (7)) - i cos ((2k pi) / (7))) =

sum_ (k = 1) ^ (6) (sin, (2 pi k) / (7) -i cos, (2 pi k) / (7)) =?

NTA MOCK TESTS-NTA JEE MOCK TEST 50-MATHEMATICS
  1. The equation of the circle which passes through the point A(0, 5) and ...

    Text Solution

    |

  2. A function f:ZrarrZ is defined as f(n)={{:(n+1,n in " odd integer"),((...

    Text Solution

    |

  3. The value of tan^(-1)[(sqrt(1-sinx)+sqrt(1+sinx))/(sqrt(1-sinx)-sqrt(1...

    Text Solution

    |

  4. The negation of the statement ''If I will become famous then I will op...

    Text Solution

    |

  5. Let a continous and differentiable function f(x) is such that f(x) and...

    Text Solution

    |

  6. The value of int(1)/((2x-1)sqrt(x^(2)-x))dx is equal to (where c is th...

    Text Solution

    |

  7. Find the equation of the tangent to the parabola y^2 = 4x + 5 which is...

    Text Solution

    |

  8. The area of the smaller part of the circle x^(2)+y^(2)=2 cut off by th...

    Text Solution

    |

  9. If a and b are arbitrary constants, then the order and degree of the d...

    Text Solution

    |

  10. veca, vecb and vecc are coplanar unit vectors. A unit vector vecd is p...

    Text Solution

    |

  11. Direction cosines to the normal to the plane containing the lines (x)/...

    Text Solution

    |

  12. If alpha, beta and gamma are the roots of the equation x^(3)-3x^(2)+4x...

    Text Solution

    |

  13. For the equation (1-ix)/(1+ix)=sin.(pi)/(7)-i cos.(pi)/(7), if x=tan((...

    Text Solution

    |

  14. Shubham has 75% chance of attending the annual meet. Shikha has a 90% ...

    Text Solution

    |

  15. Let A and B be two matrices such that the order of A is 5xx7. If A^(T)...

    Text Solution

    |

  16. The value of lim(xrarroo)(e^(x+1)log(x^(3)e^(-x)+1))/(sin^(3)(2x)) is ...

    Text Solution

    |

  17. A continous function f(x) is such that f(3x)=2f(x), AA x in R. If int(...

    Text Solution

    |

  18. The sum of 50 terms of the series 3+7+13+21+31+43+…. is equal to S(50)...

    Text Solution

    |

  19. If theta is the angle between the pair of tangents drawn to the ellips...

    Text Solution

    |

  20. The mean and variance of 5 observations are 6 and 6.8 respectively. If...

    Text Solution

    |