Home
Class 12
MATHS
The value of int((1-cos theta)^((3)/(10)...

The value of `int((1-cos theta)^((3)/(10)))/((1+cos theta)^((13)/(13))) d theta` is equal to (where, c is the constant of integration)

A

`(5)/(8)(tan theta)^((5)/(8))+c`

B

`(5)/(8)(tan.(theta)/(2))^((8)/(5))+c`

C

`(5)/(16)(tan.(theta)/(2))^((8)/(5))+c`

D

`(5)/(8)(tan theta)^((5)/(16))+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{(1 - \cos \theta)^{\frac{3}{10}}}{(1 + \cos \theta)^{\frac{13}{13}}} \, d\theta, \] we will follow these steps: ### Step 1: Rewrite the trigonometric identities We can use the identities for \(1 - \cos \theta\) and \(1 + \cos \theta\): \[ 1 - \cos \theta = 2 \sin^2\left(\frac{\theta}{2}\right) \] \[ 1 + \cos \theta = 2 \cos^2\left(\frac{\theta}{2}\right) \] Substituting these into the integral gives: \[ \int \frac{(2 \sin^2\left(\frac{\theta}{2}\right))^{\frac{3}{10}}}{(2 \cos^2\left(\frac{\theta}{2}\right))^{\frac{13}{13}}} \, d\theta \] ### Step 2: Simplify the integral This simplifies to: \[ \int \frac{2^{\frac{3}{10}} \sin^{\frac{6}{10}}\left(\frac{\theta}{2}\right)}{2^{1} \cos^{2}\left(\frac{\theta}{2}\right)} \, d\theta \] This can be further simplified to: \[ \int \frac{2^{\frac{3}{10} - 1} \sin^{\frac{6}{10}}\left(\frac{\theta}{2}\right)}{\cos^{2}\left(\frac{\theta}{2}\right)} \, d\theta \] ### Step 3: Factor out constants Factor out \(2^{\frac{3}{10} - 1}\): \[ 2^{\frac{3}{10} - 1} \int \frac{\sin^{\frac{6}{10}}\left(\frac{\theta}{2}\right)}{\cos^{2}\left(\frac{\theta}{2}\right)} \, d\theta \] ### Step 4: Use substitution Let \(t = \tan\left(\frac{\theta}{2}\right)\). Then, we have: \[ \sin\left(\frac{\theta}{2}\right) = \frac{t}{\sqrt{1+t^2}}, \quad \cos\left(\frac{\theta}{2}\right) = \frac{1}{\sqrt{1+t^2}} \] The differential \(d\theta\) can be expressed as: \[ d\theta = \frac{2}{1+t^2} dt \] Substituting these into the integral gives: \[ 2^{\frac{3}{10} - 1} \int \frac{\left(\frac{t}{\sqrt{1+t^2}}\right)^{\frac{6}{10}}}{\left(\frac{1}{\sqrt{1+t^2}}\right)^{2}} \cdot \frac{2}{1+t^2} dt \] ### Step 5: Simplify the integral This simplifies to: \[ 2^{\frac{3}{10} - 1} \cdot 2 \int \frac{t^{\frac{6}{10}}}{(1+t^2)^{\frac{6}{10}}} dt \] ### Step 6: Solve the integral Now we can integrate: \[ \int t^{\frac{6}{10}} (1+t^2)^{-\frac{6}{10}} dt \] Using the formula for integration, we can solve this integral and finally substitute back \(t = \tan\left(\frac{\theta}{2}\right)\). ### Step 7: Final result After performing the integration and substituting back, we will obtain the expression in terms of \(\theta\) and include the constant of integration \(C\). Thus, the final answer will be: \[ \frac{5}{8} \tan^{\frac{8}{5}}\left(\frac{\theta}{2}\right) + C \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 50

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 52

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

Let n ge 2 be a natural number and 0 lt theta lt (pi)/(2) , Then, int ((sin^(n)theta - sin theta)^(1/n) cos theta)/(sin^(n+1) theta)d theta is equal to (where C is a constant of integration)

The integral I=int(sin^(3)thetacos theta)/((1+sin^(2)theta)^(2))d theta simplifies to (where, c is the constant of integration)

int (d ( cos theta))/(sqrt(1-cos^(2) theta))

int (sin ^ (2) theta) / ((1 + cos theta) ^ (2)) d theta

Find the value of sqrt((1+cos theta)/(1-cos theta))+sqrt((1-cos theta)/(1+cos theta))

The value of the integral int (sin theta.sin2theta(sin^(6)theta+sin^(4)theta+sin^(2)theta) sqrt(2sin^(4) theta+3sin^(2)theta+6))/(1-cos2theta)d theta is : (where c is a constant of integration)

int(d theta)/(sin theta cos^(3)theta) is equal to

int_((sqrt(3))/(3))^((10 pi)/(3))|sin((theta)/(2))-cos theta|d theta is equal to

NTA MOCK TESTS-NTA JEE MOCK TEST 51-MATHEMATICS
  1. find the term independent of 'x' in the expansion of (1+x+x^2)(3/2 x^2...

    Text Solution

    |

  2. For a complex number Z, if the argument of (Z-a)(barZ-b) is (pi)/(4) ...

    Text Solution

    |

  3. The value of int((1-cos theta)^((3)/(10)))/((1+cos theta)^((13)/(13)))...

    Text Solution

    |

  4. In an increasing geometric progression, the sum of the first and the l...

    Text Solution

    |

  5. The sum of the first 10 terms of the series (5)/(1.2.3)+(7)/(2.3.9)+(9...

    Text Solution

    |

  6. If |sin^(2)x+10x^(2)|=|9-x^(2)|+2sin^(2)x+cos^(2)x, then x lies in

    Text Solution

    |

  7. An isosceles triangle made of wood of base 10 feet and height 8 feet i...

    Text Solution

    |

  8. The mean deviation of the series a^(2), a^(2)+d, a^(2)+2d, ….., a^(2)+...

    Text Solution

    |

  9. The number of roots of the equation sin^(-1)x-cos^(-1)x=sin^(-1)(5x-3)...

    Text Solution

    |

  10. The value of lim(xrarr0)(ln(1+2x+4x^(2))+ln(1-2x+4x^(2)))/(secx-cosx) ...

    Text Solution

    |

  11. The radius of a right circular cylinder increases at the rate of 0.2 c...

    Text Solution

    |

  12. If the graph of the function y=(a-b)^(2)x^(2)+2(a+b-2c)x+1(AA a ne b)

    Text Solution

    |

  13. The value of int(-pi)^(pi)(sqrt2cosx)/(1+e^(x))dx is equal to

    Text Solution

    |

  14. Let the tangents PQ and PR are drawn to y^(2)=4ax from any point P on ...

    Text Solution

    |

  15. Let vecp=hati+hatj+hatk are vecr be a variable vector such that vecr. ...

    Text Solution

    |

  16. Let A, B and C are nxxn matrices such that |A|-2, |B|=3 and |C|=5. If ...

    Text Solution

    |

  17. Given two independent events, if the probability that both the events ...

    Text Solution

    |

  18. The number of integral value(s) of k such that the system of equations...

    Text Solution

    |

  19. The vertices of a triangle are the points P(-26, 17), Q(30, 17) and R(...

    Text Solution

    |

  20. General solution of the differential equation (cosx)(dy)/(dx)+y.sinx=1...

    Text Solution

    |